
MineLib file format specification V1.0

D. Espinoza∗ •M. Goycoolea† • E. Moreno† • A. Newman‡
∗Department of Industrial Engineering, University of Chile, Santiago, Chile

†School of Business, Universidad Adolfo Ibañez, Santiago, Chile

‡Division of Economics and Business, Colorado School of Mines, Golden, CO 80401

daespino@dii.uchile.cl • marcos.goycooles@uai.cl • eduardo.moreno@uai.cl • newman@mines.edu

July 23, 2012

1 Introduction
Similar to the mixed-integer programming library (MIPLIB), MineLib 2011 [?]
is a library of publicly available test problem instances for three classical types
of open pit mining problems: the ultimate pit limit problem and two variants of
open pit production scheduling problems. The data comes from real-world mining
projects and simulated data. Instances in MineLib are each made up of three files.
The first file contains geological data defining a block-model of the mineral body.
This file describes block characteristics such as position in the mine, tonnage,
grades, etc. The second type of file is for describing precedence relationships
between blocks. Finally, the last type of file contains the processed data required
to formulate three production scheduling problems. This document describes in
detail the file format for these tree types of files.

2 General assumptions
All files are ASCII, and lines beginning with the character ’%’ are assumed to be
comments. Each line contains fields delimited (separated) by a space, a horizontal
tabular character, or a colon character (ASCII codes 32, 9 and 58, respectively).
All separators at the beginning of a line are discarded. Multiple contiguous sepa-
rators are treated as a single separator.

1



All entries are of the form <keyword> : <parameter type>, or simply, a
sequence of <parameter type> definitions. <keyword> is an alphanumerical
name used to identify certain entries, and <parameter type> defines a variable or
data of a certain type. The types <str>, <int>, <char> and <dbl> correspond
to a string (not containing a separator), an integer, a character, or a double type,
as in C and other popular programming languages. We assume that all entries are
given in the order specified in this document.

We introduce a flexible format, because this is the way in which many prac-
titioners transfer information about block models at the time of this writing. By
maintaining the status quo, we hope that the mining community will contribute
to and use the library. Additionally, in practice, not all mines use the same infor-
mation. For example, in some mines, the blocks have information on three differ-
ent concentrations of minerals; some information might pertain to contaminants,
while other information might pertain to sub-products. Having that information
is essential to compute correct values for the block depending on the processing
technology used.

3 The Block-Model Descriptor File
The Block-Model Descriptor File stores model information at a block-by-block
level. Each line in the file corresponds to a block in the model. All lines have the
same number of columns. These columns are organized as follows:

<int id> <int x> <int y> <int z> <str1> .. . <strk>
Each row contains the following information about a block:

• id stores a unique identifier for the block, where the block identifiers are
numbered, starting with zero.

• x,y,z represent the coordinates of the block, where a zero z-coordinate cor-
responds to the bottom-most shelf in the orebody and the z-axis points in
the upwards direction. The y-axis points directly towards the viewer while
the x-axis points to the left of the viewer.

• str1, . . . ,strk represent optional user-specified fields that may represent, e.g.,
tonnage, ore grade, or information about impurities. These values can be of
any pure type declared before and must comply with our delimiter rules for
parsing. This flexibility is allowed to match the usual formats used in the
industry.

2



4 The Block-Precedence Descriptor File
The Block-Precedence Descriptor File articulates precedence relationships be-
tween blocks in the model. Information is represented at a block-by-block level.
Each line in the file corresponds to a block in the model and its corresponding set
of predecessors. Precedence relationships are described as follows:

<int b> <int n> <int p1> .. . <int pn>
Each row gives the following precedence information:

• b stores the unique identifier of a block.

• n stores the number of predecessors specified for block b.

• p1, . . . , pn store the identifiers of the n predecessors of block b.

In general, we assume that p1, . . . , pn are immediate predecessors of block
b, but this is not a strict requirement. We assume that no two entries in the file
can begin with the same identifier. If a block b has no predecessors, then the
corresponding value n is set to 0 and no values pi are specified in the line.

5 Optimization-Model Descriptor File
The Optimization-Model Descriptor File is used to store the necessary informa-
tion to formulate (UPIT), (CPIT), and (PCPSP).

5.1 Concepts and Notation
Before defining these three problems consider the following notation: Let B =
{1, . . . ,n} represent the set of all blocks. For each block a ∈ B let P(a) represent
the precedences of a. That is, if a ∈ B and b ∈ P(a) then b should be extracted
before a. In general it is a good rule of thumb to let P(a) contain only immediate
precedessors of a. That is, if b ∈ P(a) and c ∈ P(b) then c /∈ P(a). Note that this
is not a strict requirement. Let tmax represent the number of time periods being
considered, and let dmax represent the number of possible destinations to which a
block can be sent. Let rmax represent the number of resources required to extract
a block. Assume that in order to extract block b it is necessary to use qbr amount
of resource r. Let Rrt and Rrt represent the minimum and maximum amount of
resource r which can be used in time period t. Finally, let A represent an arbitrary

3



matrix with n× tmax × dmax columns and m rows, and let q represent a vector
having m rows.

These three problem classes are the Ultimate Pit Problem (UPIT), the Con-
strained Pit Limit Problem (CPIT) and the more general Precedence Constrained
Production Scheduling Problem (PCPSP):

UPIT: This problem is also known as the maximum-weight closure prob-
lem [1]. Consider a binary variable xb for each block b ∈ B indicating if block
b should be included in the ultimate-pit. For each block b let pb represent the
profit obtained from including block b in the pit. Note that pb can be positive or
negative. The Ultimate Pit Problem consists in solving:

max ∑
b∈B

pb xb

s.t. xa ≤ xb ∀a ∈ B,∀b ∈ P(a)
xb ∈ {0,1} ∀b ∈ B

CPIT: Consider a binary variable xbt for each block b∈B and each time period
t ∈ 1, . . . ,T indicating if block b should be extracted in time period t. For each
variable xbt let pbt represent the profit obtained from extracting block b in time
period t. Note that pbt can be positive or negative. The Constrained Pit Limit
Problem consists in solving:

max ∑
b∈B

tmax

∑
t=1

pbt xbt (1)

s.t.
t

∑
τ=1

xaτ ≤
t

∑
τ=1

xbτ ∀a ∈ B,∀b ∈ P(a) 1≤ t ≤ tmax (2)

tmax

∑
t=1

xbt ≤ 1 1≤ t ≤ tmax (3)

Rrt ≤ ∑
b∈B

qbrxbt ≤ Rrt 1≤ t ≤ tmax, 1≤ r ≤ rmax (4)

xbt ∈ {0,1} ∀b ∈ B,1≤ t ≤ tmax (5)

Constraints (2) impose the precedence constraints. That is, if a is an immediate
predecessor of b, then a must be extracted before or in the same time period as b.
Constraints (3) impose that each block can be extracted at most once. Constraints
(4) impose that the minimum and maximum resource constraints are satisfied each
period.

4



PCPSP: Consider the same binary variables xbt defined in CPIT. In addition,
consider continuous variables ybdt representing how much of block b to send to
destination d in time period t. The Precedence Constrained Production Scheduling
Problem consists in solving:

max ∑
b∈B

dmax

∑
d=1

tmax

∑
t=1

pbdt ybdt (6)

s.t.
t

∑
τ=1

xaτ ≤
t

∑
τ=1

xbt ∀a ∈ B,∀b ∈ P(a), 1≤ t ≤ tmax (7)

xbt =
dmax

∑
d=1

ybdt ∀b ∈ B,1≤ d ≤ dmax, 1≤ t ≤ tmax (8)

tmax

∑
t=1

xbt ≤ 1 1≤ t ≤ tmax (9)

Rrt ≤ ∑
b∈B

qbdrybdt ≤ Rrt 1≤ t ≤ tmax, 1≤ r ≤ rmax (10)

a≤ Ay≤ a (11)
ybdt ∈ [0,1] ∀b ∈ B, 1≤ d ≤ dmax, 1≤ t ≤ tmax (12)
xbt ∈ {0,1} ∀b ∈ B, 1≤ t ≤ tmax (13)

Constraints (7), (9), and (10) are as before. Constraints (8) impose that blocks
are broken up and sent to their destinations appropriately and constraints (11)
represent general side-constraints.

5.2 The file format
5.2.1 NAME: <str s>

Identifies the data file.

5.2.2 TYPE: <str s>

Specifies the problem type. The value of s must be UPIT,CPIT , or PCPSP.

5.2.3 NBLOCKS: <int n>

Gives the number of blocks in the problem.

5



5.2.4 NPERIODS: <int tmax>

Identifies the number of time periods for the problem; this field is valid for formu-
lating problems of type (CPIT) and (PCPSP).

5.2.5 NDESTINATIONS: <int dmax>

Specifies the number of possible processing alternatives for each block; this field
is valid for formulating problems of type (PCPSP).

5.2.6 NRESOURCE SIDE CONSTRAINTS: <int rmax>

Identifies the number of operational resource constraints per time period; this field
is valid for problems of type (CPIT) and (PCPSP).

5.2.7 NGENERAL SIDE CONSTRAINTS: <int m>

Identifies the number of general side-constraints for the problem, or equivalently,
the number of rows in matrix A. This field is valid for problems of type (PCPSP).

5.2.8 DISCOUNT RATE: <dbl α>

This specifies the discount rate used in computing the objective function. That is,
pbt =

pb
(1+α)t and pbdt =

pbd
(1+α)t , where pb and pbd are quantities defined subse-

quently in the file.

5.2.9 OBJECTIVE FUNCTION:

The objective function is given by one row for each block. Thus, this section has
NBLOCKS lines. If the problem-type is either (UPIT) or (CPIT), the number of
destinations is assumed to be one, i.e., NDESTINATIONS=1. In this case, pb = pb1.
Each line is of the form:

<int b> <dbl pb1> .. . <dbl pbdmax>
That is, the first value (b) defines the block, and the next dmax values describe

the objective function values associated with each destination. No two lines can
begin with the same identifier.

6



5.2.10 RESOURCE CONSTRAINT COEFFICIENTS:

Here, we define the coefficients qbr and qbrd , corresponding to constraints (4)
and (10) in (CPIT) and (PCPSP). This entry consists of n lines, where n is at
most the total number of non-zero coefficients in the aforementioned constraints.
Specifically, each of these lines has the form:

<int b> <int r> <dbl v>
or
<int b> <int d> <int r> <dbl v>
The values of b, d, and r indicate the block, the destination, and the operational

resource, respectively. The value of v represents the coefficient qbr or qbrd . All
coefficients that are not defined in this way have value zero.

5.2.11 RESOURCE CONSTRAINT LIMITS:

Here, we define the limits Rrt and R̄rt corresponding to constraints (4) and (10) in
(CPIT) and (PCPSP), respectively.
This entry consists of NRESOURCE CONSTRAINTS lines, each having the form:

<int r> <int t> <char c> <dbl v1>
or
<int r> <int t> <char c> <dbl v1> <dbl v2>
The value of r indicates the operational resource and the value of t indicates

the time period in which the operational resource constraint holds. The value
of c can be L (less-than-or-equal-to), G (greater-than-or-equal-to) or I (within an
interval). If c has value L, then Rrt = −∞ and R̄rt is equal to the value of v1. In
this case, v2 is not defined. If c has value G, then R̄rt = ∞ and the value of Rrt
is equal to v1. In this case, v2 is not defined. If c has value I, then v1 has value
Rrt and v2 has value R̄rt . No default value is assumed for these limits. Thus, if an
operational resource constraint has no specific type and limits, the instance is not
well defined.

5.2.12 GENERAL CONSTRAINT COEFFICIENTS:

Here, we define the coefficients Abdt j of matrix A, corresponding to constraints
(11) in (PCPSP), where b is a block identifier, d a destination identifier, t a time
period, and j a number between 0 and m− 1, where m is the number of rows in
A. This entry consists of n lines, where n is at most the total number of non-zero
coefficients in matrix A. Specifically, each of these lines has the form:

7



<int b> <int d> <int t> <int j> <dbl v>
The values of b, d, t, j, and v indicate the block, the destination, the time

period, the row, and the coefficient Abdr j in the matrix A, respectively. All coeffi-
cients that are not defined in this way have value zero.

5.2.13 GENERAL CONSTRAINT LIMITS:

Here, we define the limits corresponding to constraints (11) in (PCPSP). This
entry consists of NGENERAL SIDE CONSTRAINTS lines, each having the form:

<int m> <char c> <dbl v1>
or
<int m> <char c> <dbl v1> <dbl v2>
The value of m indicates the row number of A. The value of c can be L, G or I.

If c has value L, then am =−∞ and ām is equal to the value of v1. In this case, v2
is not defined. If c has value G, then am = ∞ and the value of ām is equal to v1. In
this case, v2 is not defined. If c has value I, then v1 has value am and v2 has value
ām. No default value is assumed for these limits. Thus, if an operational resource
constraint has no specific type and limits, the instance is not well defined.

References
[1] R. AHUJA, T. MAGNANTI, AND J. ORLIN, Network Flows, Prentice Hall,

1993.

8


