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Abstract
The appointment scheduling problem (ASP) is well studied in the literature. The vast majority of the

existing work, however, does not consider the well-established fact that whether a patient shows up for an
appointment or not is influenced by the appointment time, the usual decision variable in the ASP. This
paper studies the ASP with random service time (exogenous uncertainty) and patient’s decision-dependent
no-show behavior (endogenous uncertainty). This problem belongs to the class of stochastic optimization
models with decision-dependent uncertainties. These problems are notoriously difficult to solve due to
the lack of convexity—and also in our case—the presence of continuous distributions (service time),
which requires different techniques to solve this problem. We develop a projected gradient path (PGP)
method to solve the non-convex constrained stochastic optimization problem. This method improves
upon the Stochastic Trust-Region Response-Surface (STRONG) Method by Chang, Hong, and Wan
(2013) for unconstrained simulation optimization by integrating a Cauchy line search originally designed
for deterministic problems (see Conn, Gould, and Toint (2000)). We derive the gradient estimator by
exploiting the structure of the objective function of the problem and then apply the PGP method to solve
for the schedules accordingly. To the best of our knowledge, this is the first paper to solve the problem
with decision-dependent uncertainties using simulation optimization approach. This method can solve the
exact ASP problem under arbitrary smooth show-up probability functions and the performance is shown to
bypass the distributionally robust optimization method developed by Kong, Li, Liu, Teo, and Yan (2019)
in most cases. We present solutions under different no-show behaviors and demonstrate that breaking
the assumption of constant show-up probability substantially changes the scheduling solutions. Finally,
we show that significant cost reduction can be achieved when incorporating the time-dependent no-show
behavior: While the amount of cost reduction varies according to several factors, most importantly the
shape of the show-up probability functions, in our numerical experiments we observed significant cost
reductions in all settings, with values of up to 54% in one case.

1 Introduction

Deciding appointment times for patients is one of the critical decisions outpatient healthcare providers have

to make to better utilize the critical resources, reduce overtime work of healthcare providers, and in the

meantime, to shorten the waiting time of patients. Shorter inter-arrival times can lead to higher utilization

of the resources but longer patient waiting time. On the contrary, longer inter-arrival times can reduce
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patient waiting but increase idle time and overtime of the service system. Appointment systems are stochastic

in nature. For instance, service duration—an important factor to consider in the appointment scheduling

problem (ASP)—is usually random. Therefore, deciding optimal schedules for the patients involve trading-off

competing objectives under a stochastic setting.

In practice there exists a second source of uncertainty, incurred by the possibility that a patient does not

show up for his/her appointment, i.e., patient no-show behavior. Every healthcare system bears the risk of

patient no-show, which has significnatly negative impacts on the healthcare system including increased system

costs, under-utilized critical resources, and reduced patient outcome (Daggy et al., 2010; Lacy, Paulman,

Reuter, & Lovejoy, 2004; Moore, Wilson-Witherspoon, & Probst, 2001). Besides individual characteristics

such as demographic and social-economics factors, home-clinic distance, and no-show history (see Dantas,

Fleck, Cyrino Oliveira, and Hamacher (2018) for a systematic review), current literature reports that patient

no-show behavior can be time dependent. Evidence shows that the show-up probability does not only depend

on the appointment day and day of the week (Gallucci, Swartz, & Hackerman, 2005; Samorani & LaGanga,

2015), but also on time of the day in which the patient is scheduled. Moore et al. (2001) analyze a hospital in

South Carolina and the results suggest that morning appointments are more likely to be kept than afternoon

ones. LaGanga (2011) presents evidence from a mental health center showing that show-up rates vary with

the time of the day. Dantas, Hamacher, Cyrino Oliveira, Barbosa, and Viegas (2019) in a Bariatric clinic

study show that patients tend to show up less towards the later hours of the day. Kong et al. (2019) analyze

two independent data sets and have interesting results: On weekdays patients in a US adult health care

facility are more likely to show up at the beginning of the day or late in the afternoon while in a Chilean

pediatric practice, the show-up rates on weekdays are lower in early morning and a peak is seen at the middle

of the day.

Despite the widely recognized evidence on time-dependent no-show behavior, scarcely any work on ap-

pointment scheduling has taken this phenomenon into consideration. A major difficulty in this problem is

the fact that show-up probabilities depend on the scheduled time of appointment; thus, the problem belongs

to the class of stochastic optimization models with decision-dependent uncertainty—or, more specifically,

decision-dependent probabilities, following the taxonomy of Hellemo, Barton, and Tomasgard (2018). Such

problems are notoriously hard to solve, especially because of their lack of convexity, and solutions meth-

ods found in the literature often exploit the structure of the problem. A recent survey of such methods

can be found in Hellemo et al. (2018). It is worthwhile noticing, however, that the methods discussed in

Hellemo et al. (2018) always assume a finite (and moderately-sized) number of possible scenarios—indeed,

the authors of that paper say that “[We] are not familiar with any attempts to model and solve problems

with decision-dependent probabilities using continuous probability distributions." In our case, although the

decision-dependent random variables do have finite support (as they represent the attendance or not of each

2



patient), the presence of continuous distributions to represent service times requires different techniques to

solve the problem.

In this paper, we present a method to find solutions to ASP with time-dependent show-up probabilities

and stochastic service times. Our approach has two main ingredients. The first one, which is key for

subsequent developments, is the estimation of gradients of the objective function E [f(x, ξ)] with respect

to the decision variables x, where ξ denotes the random variables in the problem. The topic of gradient

estimation of stochastic functions is very well studied; see, for instance, M. C. Fu and Hu (1997); Glasserman

(1991); Rubinstein and Shapiro (1993) for comprehensive discussions and also M. C. Fu (2015) for a more

recent survey of existing techniques. These general approaches typically assume that either (i) the underlying

probability distributions are exogenous and do not depend on the decision variables (i.e. ξ does not depend

on x) , or (ii) the dependence on the decision variables occurs only in the probability distributions, as in

the case for example of queuing systems where the distribution of service times depend on some controllable

parameter— that is, E [f(x, ξ)] = E [g(ξ(x))] for some function g. Our case, however, is more involved;

indeed, because the decision variables are the arrival times and the show-up probabilities depend on such

times, the decision variables appear as parameters both in the integrand of the objective function as well

as in the probability distributions, so we actually have E [f(x, ξ(x))]. By exploiting the structure of the

uncertainty we are able to derive expressions for the gradient that can be easily estimated with Monte Carlo

simulation. A particular advantage of our approach is that it allows for any functional form to represent the

dependence of show-up probabilities on time; the only requirement is that such a function be differentiable.

Such flexibility contrasts with previous works in the literature, which can deal only with piecewise linear

function form (cf. Kong et al. (2019)).

The second ingredient of our approach is the optimization algorithm. As we show in the paper, by making

a mild assumption on the decision variables—namely, that no two patients can be scheduled to arrive at the

exact same moment—we show that the objective function is differentiable and thus, by making use of the

gradient estimation technique discussed above, we can apply a sampling-based first-order stochastic opti-

mization method. We develop a gradient projection path method (PGP) to solve the constrained stochastic

problem with decision-dependent uncertainties, building upon the STRONG approach proposed by Chang et

al. (2013) to find stationary points and Cauchy line searches originally designed for deterministic problems

(see Conn et al. (2000)). The STRONG method combines the advantage of the trust-region methods and the

response surface methodology to solve unconstrained simulation optimization problems. However, since our

problem is constrained, we integrate a Cauchy line search with the method to incorporate gradient projec-

tions. Along the way, we have made an important simplification to the line search procedure—which may be

of independent interest as it is not related to our specific problem—that avoids the calculation of projections

onto tangent cones, which can be computationally expensive.

3



While the resulting algorithm yields locally optimal solutions (which is natural since the problem is non-

convex), by applying a multi-start procedure we are able to obtain very good solutions. As discussed earlier,

we are not aware of any other approach that can model arbitrary smooth show-up probability functions; the

only available benchmark to our method is the work of Kong et al. (2019), who model this problem as a

distributionally robust optimization and solve for the schedules using a set of approximations and heuristics.

The method proposed in that paper only uses the first two moments and thus avoids more complexity brought

by estimating any specific distribution. That method, however, can be very conservative under some extreme

circumstances, e.g., when the system is very crowded. Via a set of computational studies, we show that our

approach can replicate the optimal schedules reported in Hassin and Mendel (2008) and makes significant

improvements as compared to Kong et al. (2019), not only in terms of the quality of the solutions but also

because in Kong et al. (2019) only piece-wise linear show-up functions are allowed. Moreover, we present

solutions under different show-up functions and demonstrate that breaking the assumption of constant show-

up probability substantially changes the solution patterns and significantly reduces system costs. We observe

that significant improvements can be obtained by incorporating the time-dependent no-show behavior: Under

most show-up function forms, significant improvements in performance (13.1% to 54.0%) can be observed,

while relatively milder improvements (4.2% to 12.8%) are seen in the increasing show-up function.

2 Literature Review

The appointment scheduling problem is extensively studied in the literature of Operations Management.

Interested readers can refer to Ahmadi-Javid and Klassen (2017) and Gupta and Denton (2008) for excellent

literature reviews on ASP. The following literature review focuses on appointment scheduling problems with

patient no-show behavior.

In the literature review presented in Cayirli and Veral (2003) several sources of uncertainty, assumptions

and methodologies that have been used are described. Most commonly used methodologies include queuing

theory, mathematical programming and simulation studies. There are cases where only the randomness of

service time has been considered (Denton & Gupta, 2003; Robinson & Chen, 2003), only patients no-show

behavior (Zacharias & Pinedo, 2014) is considered, or both (Erdogan & Denton, 2013; Hassin & Mendel,

2008; Jiang, Shen, & Zhang, 2017; Kong et al., 2019). Our paper considers two main sources of uncertainty:

stochastic service time and patients time-dependent no-show.

Erdogan and Denton (2013) formulate two appointment scheduling models using stochastic linear pro-

gramming. One model extends the sequential bounding approach developed in Denton and Gupta (2003)

and incorporate patient no-shows in the ASP. Their computational experiments show that the optimal inter-

arrival times reduces as the no-show probabilities increase. Hassin and Mendel (2008) investigate the ASP
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using a single-server model with no-shows. They assume exponential service-time distribution and time-

invariant no-show, i.e., the show-up probabilities remain unchanged across the planning session. They report

continuous scheduling decisions (vs. template) and show that the optimal schedules in the no-show context

still exhibit a dome-shaped pattern. We use that paper as one of the benchmarks for the Projected Gradient

Path algorithm developed in our paper and show that our method can replicate the optimal patterns reported

in Hassin and Mendel (2008). Zacharias and Pinedo (2014) study an overbooking model for scheduling ar-

rivals within a day of heterogeneous patients, i.e. having different show-up probabilities and different waiting

costs. They divide the working day into a finite number of slots in which a number of patients is assigned

to every slot. They present priority rules and structural results for the optimal schedule and find optimal

schedules for the homogeneous patients case. Jiang et al. (2017) consider a distributionally robust model

under static patient no-show and random service duration, studying the cases risk-neutral and risk-averse

system operator in order to incorporate his/her risk preferences.

Two works are directly related to this paper. Kong et al. (2019) and LaGanga and Lawrence (2012) present

some results about the effect of this time-dependence. LaGanga and Lawrence (2012) present an appointment

scheduling model that considers no-show and deterministic service time. A heuristic is proposed based on a

gradient search algorithm and adapted to solve the case with slot dependent show-up probability. Although

LaGanga and Lawrence give one of the first results on the slot-dependent case, the solution procedure they

proposed is based on a heuristic due to the computational difficulty. Therefore, some research opportunities

are left open for new models that consider stochastic service times and more systematic optimization approach.

Kong et al. (2019) present empirical evidence using data from two different countries that patient no-show

behavior depends on the time of the day. They develop a distributionally robust model that allows schedule-

dependent show-up rates under stochastic service time. Their computational results suggest that a significant

efficiency gain can be achieved when time-of-day effect on show-up probabilities is incorporated. Kong et al.

(2019) is arguably the first work that incorporates the slot-dependent no-show into appointment scheduling

problem with random service time. Their methodology, however, has several limitations: First, the solution

procedure consists of several layers of approximations (SDP approximations to co-positive and completely

positive cones) and heuristics (iterative approach). It is not even clear whether the solution generates upper

or lower bounds. Second, due to the cone structure, the current solution proposed in the paper can only

deal with piece-wise linear show-up functions with time. Third, since it solves for the worst-case scenarios,

the solution generated can be very conservative in some cases, for example, when the system is overcrowded

or/and the show-up probabilities are large towards the end of the session.

Inspired by those limitations, the present work proposes a methodology to find solutions to the exact

appointment scheduling problem with known service time distributions. In the first crucial step, we exploit the

structure of the problem and derive the gradient estimator of the objective function. We then develop a new
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PGP method to solve the constrained stochastic problem with decision-dependent uncertainties, improving

upon two existing originally designed for unconstrained and deterministic problems. In the following, we

briefly review the stochastic optimization literature on decision-dependent uncertainties.

Decision-Dependent Uncertainties

The stochastic programming problem with decision-dependent uncertainty—where the decision variables

influence the underlying stochastic process—is known to be difficult to solve. Pflug (1990) is arguably the first

paper that works on this topic, where the optimization decisions can influence the stochastic process. Later

on several papers appear to tackle the problem formulated in different contexts/fields, such as network design

problem (Ahmed (2000)), gas field planning (Goel and Grossmann (2004)) and project decisions (Jonsbråten,

Wets, and Woodruff (1998)). Goel and Grossmann (2006) address a class of stochastic program with decision-

dependent uncertainties. They use mixed-integer disjunctive programs to describe the decision-dependency,

prove some structural properties of size reduction and propose a branch-and-bound algorithm. Hellemo et

al. (2018) give an excellent review on the recent work of decision-dependent uncertainty. These techniques

usually need to assume finite support of the decision variables and represent the problem with scenario trees.

Our problem, however, consists of continuous random variables (service times). We tackle this problem by

using a simulation optimization approach.

3 The Model

3.1 Problem Description

In this section, we introduce the stochastic model for the appointment schedule problem with patient time-

dependent no-show behavior and our model assumptions.

Cayirli and Veral (2003) provide an extensive review of related literature, identifying differences in the

definition and formulation of the problem. The differences include the nature of the decision-making (static

or dynamic), number of servers, number of doctors, punctuality of patients, presence of no-shows, presence

of regular and emergency walk-ins, presence of companions and service times (empirical or theoretical distri-

bution). There are also differences on the performance measure, the design of the appointment system and

the methodology applied.

Under this framework, our paper assumes that a fixed number of patients are to be scheduled to arrive at

a fixed-length clinic session with a single service provider. Patients may not show up for their appointments,

incurring patient no-show; in particular, we assume that patient show-up probabilities depend on time of

arrivals. If they show up, they always arrive at the scheduled time, i.e., non-punctual arrivals are not

6



Notation Description

n Number of patients to be scheduled
T Length of the clinic session
Ai Random attendance status of patient i.
Ui Random service time for patient i
Wi Waiting time of patient i
Si Idle time on time (slot) assigned to patient i
L Overtime of the session
xi Time assigned to patient i (decision variable)
TC Total Cost
cw Cost of waiting time per unit of time
cI Cost of idle time per unit of time
co Cost of overtime per unit of time
p(t) Probability that a patient shows up when their appointment is scheduled at time t

Table 1: Notation

considered. Walk-in, and emergency arrivals are not considered either. The arrival sequence is predetermined,

thus arrival times are the only (continuous) decision variables. Service time is assumed to be stochastic. This

stochastic nature of the system together with patient no-show behavior may incur patient waiting time, service

provider’s idle time and overtime. The objective is to minimize the weighted sum of the three performance

measures by deciding the optimal schedule for each patient.

As customary in the literature, the decision making process in this paper is assumed to be static (offline),

i.e., all appointment requests are known in advance to the scheduling decision. Some recent work (Erdogan,

Gose, & Denton, 2015; Parizi & Ghate, 2016; Truong, 2015) studies on the online appointment scheduling

problem, in which they dynamically assign arriving patients to the the remaining slots. Thus, the present

work focuses on drawing insights into the appointment design under time-dependent no-show over a longer

planning horizon.

3.2 Problem Formulation

Table 1 presents the notation used in this paper. Among them, x = (xi) , i = 0, . . . , n are the decision

variables and denote the inter-arrival time between patient i and patient i + 1, with x0 (≥ 0) denoting the

arrival time of the first patient and xn the time between the arrival of the last patient and the end of the

session (time T ). Each element in x is non-negative and
∑n−1
i=0 xi ≤ T , which indicate that each patient

is allocated with a non-negative time interval and all patients arrive within the clinic session [0, T ]. . The

scheduled arrival time for patient i is is represented by
∑i−1
j=0 xj for i ≥ 1. The sources of randomness of

the system are represented by A and U, which represent respectively the attendance status of each patient

and their service time. More specifically, A is a vector of n Bernoulli random variables (Ai = 1 if patient i
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shows-up and Ai = 0 if not) and U is a vector of n random variables characterizing the service times.

Following Denton and Gupta (2003), we present below expressions for the total cost of a given schedule.

The cost is a weighted sum of waiting time, idle time and overtime costs of the system, and is expressed as

TC(x,A,U) = coL+ cIx0 +
n∑
i=1

[cwAiWi + cISi] (1)

, where the waiting time and idle time for the patient i are given by the following recursive expressions:

W1 = 0 (2)

Wi = max (0, Wi−1 +Ai−1Ui−1 − xi−1) , i = 2, . . . , n (3)

Si = max (0, xi −AiUi −Wi) i = 1, . . . , n (4)

L = max (0, Wn +AnUn − xn) (5)

xn = T −
n−1∑
j=0

xj . (6)

Due to the crucial decision-dependent uncertainty characteristics of the problem, the distribution of the

random vector A depends on the scheduling decisions x, thereby turning the problem into a difficult stochastic

optimization problem. We shall then write A(x) to emphasize that dependence. Note also that the random

variables W , S and L depend on x as well, but the dependence is omitted to simplify the notation. The

optimization problem aims to find an schedule given by x that minimizes the expected total cost, subject to

non-negativity constraints. It formulated as follows:

min
x∈X

{
f(x) := EA(x),U [TC(x,A(x),U)]

}
, (7)

where X := {x ∈ Rn : x ≥ 0,
∑n−1
j=0 xj ≤ T}. One difficulty is to calculate the objective function f(x)

which involves the recursive equations (3) and (4). Assuming that the service times U do not depend on the

time of the day — a reasonable assumption in this context — we can express the function as a conditional

expectation as follows:

f(x) = EU [ϕ (U,x)] (8)

where

ϕ (U,x) := EA(x) [TC (x,A(x),U) |U] (9)
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As we shall see shortly, the structure of the problem allows us to find an exact expression for the inner

expectation ϕ(U,x), which represents the expected total cost for a given vector of service times. Suppose

that the no-show behavior of patients is not affected by the behavior of other patients, i.e., the Bernoulli

components of the vector A(x) are mutually independent. By noticing that each random variable Ai is

Bernoulli, we represent a scenario of patients’ attendance realizations as a binary vector, denoted ωA, where

a value of 1 in the component i of the vector indicates that patient i shows up and 0 indicates otherwise.

Thus, the probability of a realization ωA = (ωA1 , ..., ωAn), which yields the probability mass function of the

random vector A (x), is given by:

P(A(x) = ωA) =
n∏
i=1

Pi(x, ωAi), (10)

where Pi(x, ωAi) represents the probability mass function of the random variable Ai(x), i.e., P (Ai(x) = ωAi).

Recall from Table 1 that p (t) represents a function that returns the probability that the patient shows up

when their appointment is at time t. It follows that we can express the function Pi(x, ωAi) as:

Pi(x, ωAi) := P (Ai(x) = ωAi) =


p

i−1∑
j=0

xj

 ωAi = 1

1− p

i−1∑
j=0

xj

 ωAi = 0.

(11)

From expressions (10)-(11) we can see explicitly the endogenous uncertainty, where the probability of a

scenario depends on the decision variables vector x. Moreover, this dependence is defined by a highly

nonlinear function. Also, the same equations imply that the function ϕ(U,x) defined in (9) can be expressed

as

ϕ(U,x) =
∑

ωA∈{0,1}n

(
TC(x, ωA,U)

n∏
i=1

Pi(x, ωAi)
)
, (12)

and thus the objective function f(x) can be expressed as:

f(x) = EU

 ∑
ωA∈{0,1}n

(
TC(x, ωA,U)

n∏
i=1

Pi(x, ωAi)
) . (13)

The exact evaluation of f (x) has two obstacles. First, calculating ϕ(U,x) would require enumeration of

all no-show scenarios, the number of which grows exponentially with the number of patients (2n). Second,

the stochasticity of service time implies that it is necessary to calculate a multidimensional integral.

Through simulation and interpolation a graph that shows the estimated objective function surface is

presented on Figure 1. The axes in the figures correspond to the values of x1 and x2 (x0 is set to 0). This
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Figure 1: Estimated Objective Function Value under the Case of Three Patients, Uniform Service Time
(U ∼ U (2.5, 7.5)), Linearly Decreasing (from 0.8 to 0.2) Show-up Function and Cost Parameters cw = 1;
cI = 10; co = 15.

is an example of a system with three patients whose show-up probability decreases linearly during the day.

Despite the simplicity of this instance, it is already possible to observe the non-linear non-convex feature of

the problem. In Sections 4 and 5 we present a gradient-based algorithm to solve the problem.

The following assumption will be made for the remainder of the paper:

Assumption A: The no-show behavior of patients is not affected by the behavior of other patients, i.e.,

the Bernoulli components of the vector A(x) are mutually independent. Moreover, the service times U are

mutually independent and have continuous distributions.

4 Gradient Estimation

Our first task before we describe our gradient-based optimization algorithm is to discuss how to estimate

the gradient of the objective function in (7). Even though the objective function can be estimated through

simulation of the service time and attendance status of each patient, obtaining an estimator of the gradient

is not a trivial task. M. C. Fu (2015) summarizes some of the frequently used methodologies for gradient

estimation of expected-value functions, such as Finite Differences, Infinitesimal Perturbation Analysis, Like-

lihood Ratio and Measure-Valued Differentiation. Each of these techniques has its own limitations: Finite

Differences typically yields very noisy estimators that are sensitive to the choice of the perturbation param-

eter(s); Likelihood Ratio relies strongly on the selection of an appropriate distribution independent of x to

sample from, but such a distribution may not be good uniformly for all x; Infinitesimal Perturbation Analysis
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differentiates the function on each sample path, but in principle cannot be applied when the distribution of

the random variables depends on x. Measure-Valued Differentiation can in principle only be applied when

the distribution depends on the parameter(s) of interest.

In what follows we present an unbiased estimator of the gradient of f(x), obtained by exploiting the

structure of the objective function. Our approach can be viewed as a form of Conditional Monte Carlo

techniques (see M. C. Fu and Hu (1997)). To proceed, consider the representation of f(x) given in (13).

Then, by defining P (x, ωA) :=
∏n
i=1 Pi(x, ωAi), we can write

f(x) =
∑

ωA∈{0,1}n
P (x, ωA)EU [TC(x, ωA,U)] (14)

and thus, if P (·, ωA) is differentiable, so is f(·) as long as EU [TC(·, ωA,U)] is differentiable as well. Theo-

rem 1 below shows some properties of the function TC(·, ωA,U).

Theorem 1. Let x be an arbitrary point belonging to the interior of the simplex X := {x ∈ Rn : x ≥

0,
∑n−1
j=0 xj ≤ T}, and let ωA ∈ {0, 1}n be an arbitrary attendance scenario. Suppose also that Assumption A

holds. Then, the function TC(·, ωA,U) is differentiable at x with probability one (i.e. for almost every

realization of U) and its gradient can be calculated. Moreover, there exists a constant M > 0 such that

|TC(x, ωA,U)− TC(y, ωA,U)| ≤M ‖x− y‖ w.p.1. (15)

Proof. For each i = 1, . . . , n, let Bi denote the time at which patient i begins being served. Also, let

ri := x0 + . . .+ xi−1 denote the arrival time of the ith patient, and let R denote the region of feasible values

of r1, . . . , rn. Let ωA ∈ {0, 1}n be an arbitrary attendance scenario. Then, we have that

B1 = r1 (16)

Bi = max
(
ri, Bi−1 + ωAi−1Ui−1

)
, i = 2, . . . , n. (17)

Note that Bi is a function of r1, . . . , ri only. Moreover, it is easy to see that the beginning-of-service time Bi

relates to the waiting times Wi and idle times Si as follows:

Wi = Bi − ri, (18)

Si = Bi+1 −Bi − ωAiUi, (19)

where Bn+1 is defined as in (17) and rn+1 ≡ T .

In view of (17), it follows that Wi ≥ 0 and Si ≥ 0. Also, both Wi and Si are functions of r1, . . . , ri only.
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Moreover, from (5) we see that the overtime L can be written as the waiting time of the "(n+ 1)st" patient

and thus we have

L = Wn+1 = Bn+1 − rn+1. (20)

Our first claim is that the function Bi can be written as the maximum of i affine functions. More

specifically,

Bi(r1, . . . , ri) = max

ri, ri−1 + ωAi−1Ui−1, ri−2 + ωAi−1Ui−1 + ωAi−2Ui−2, . . . , r1 +
i−1∑
j=1

ωAjUj

 , i = 2, . . . , n+1.

(21)

For i = 1 the statement is trivially true, since the function B1(r1) is just the identity function. Suppose

that the statement is true for 1, . . . , i− 1. Then, from (17) and the induction hypothesis we have

Bi = max
(
ri, Bi−1 + ωAi−1Ui−1

)
= max

ri, max

ri−1, ri−2 + ωAi−2Ui−2, . . . , r1 +
i−2∑
j=1

ωAjUj

+ ωAi−1Ui−1


= max

ri, max

ri−1 + ωAi−1Ui−1, ri−2 + ωAi−2Ui−2 + ωAi−1Ui−1, . . . , r1 +
i−1∑
j=1

ωAjUj


= max

ri, ri−1 + ωAi−1Ui−1, ri−2 + ωAi−2Ui−2 + ωAi−1Ui−1, . . . , r1 +
i−1∑
j=1

ωAjUj


and so we see that (21) holds.

Let x be an arbitrary point belonging to the interior of the simplex X := {x ∈ Rn : x ≥ 0,
∑n−1
j=0 xj ≤ T}.

We show now that the function TC(·, ωA,U) is differentiable at x with probability one (i.e. for almost every

realization of U). Recall that r denotes the corresponding vector of arrival times. Note that the assumption

that x belongs to the interior of X implies that r satisfies

0 < r1 < r2 < . . . < rn < rn+1 ≡ T.

From equations (18) and (19), together with the relation ri = x0 + . . .+ xi−1, we see that it suffices to show

that Bi is differentiable at r. From (21), we see that Bi is differentiable except at the “kink" points where at

least two of the affine functions on the right hand side of (21) are equal (note that the kink points depend
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on the scenario of U). Outside those kink points we have, for any i = 1, . . . , n+ 1 and j = 1, . . . , n,

∂Bi
∂rj

=


1 if j = ki

0 otherwise
(22)

, where ki is the index of the function attaining the maximum in (21). Furthermore,

P (Bi is not differentiable at r) ≤ P

rkis +
i−1∑
j=kis

ωAjUj = rkit +
i−1∑
j=kit

ωAjUj for some kis, kit ∈ {1, . . . , i}, kis < kit


≤

∑
kis,k

i
t∈{1,...,i} : kis<kit

P

rkis +
i−1∑
j=kis

ωAjUj = rkit +
i−1∑
j=kit

ωAjUj


=

∑
kis,k

i
t∈{1,...,i} : kis<kit

P

0 < rkit − rkis =
kit−1∑
j=kis

ωAjUj

 . (23)

Consider the term inside the sum in (23). If all the ωAj , j = kis, . . . , k
i
t − 1 are zero, then it is clear

that the probability on the right-hand side of that equation is zero. Suppose now that the set J := {j ∈

{kis, . . . , kit−1} ; ωAj = 1} is non-empty. Then, the term
∑
j∈J Uj is a sum of continuous independent random

variables and therefore it has continuous distribution. Although the value of rkit − rkis may vary according

to the scenario of U , there are only finitely many possible choices for both rkit and rkis (namely, r1, . . . , rn

defined in terms of the chosen point x). It follows that

P (Bi is not differentiable at r) ≤ P

∑
j∈J

Uj = rkit − rkis > 0

 = 0

and therefore Bi is differentiable with probability one. It follows from (18)-(20) that Wi, Si, and L are also

differentiable with probability one with respect to r, and hence also with respect to x. By definition (1)

of the total cost function TC, we conclude that, for each attendance scenario ωA ∈ {0, 1}n, the function

TC(·, ωA,U) is differentiable at x with probability one (i.e. for almost every realization of U).

Finally, we show that TC(·, ωA,U) is a Lipschitz function. From the relations (18), (19) and (20) we

have for i, j = 1, . . . , n that

∂Wi

∂rj
= ∂Bi
∂rj
− I{j=i}

∂Si
∂rj

= ∂Bi+1

∂rj
− ∂Bi
∂rj

,

∂L

∂rj
= ∂Bn+1

∂rj

13



which can be calculated using (22). Then, from (1) we write

∂TC(x, ωA,U)
∂rj

= co
∂L

∂rj
+ cII{j=1} +

n∑
i=1

[
cwωAi

∂Wi

∂rj
+ cI

∂Si
∂rj

]
, (24)

and so it is easy to see that the derivatives of TC with respect to r are bounded by a constant. By using the

chain rule we can write

∂TC(·, ωA,U)
∂xj

=
n∑
i=1

∂TC(·, ωA,U)
∂ri

∂ri
∂xj

=
n∑
i=1

∂TC(·, ωA,U)
∂ri

I{j<i}, (25)

and so we see that the derivatives of TC with respect to x are also bounded, thus TC(·, ωA,U) is Lipschitz.

Remark 1. The condition that x belongs to the interior of the set cannot be relaxed. To see that, consider

the term B2. We have

B2 = max (r2, B1 +A1U1)

so B2 is non-differentiable iff r2 = B1 + A1U1 = r1 + A1U1, i.e., if A1U1 = r2 − r1. If r1 = r2, then such an

event occurs if A1 = 0, an event of positive probability.

Consider the term B3. We have

B3 = max (r3, B2 +A2U2)

so B3 is non-differentiable iff r3 = B2 +A2U2. If r3 = r2, a sufficient condition for this to occur is that

A2 = 0 and r2 ≥ r1 +A1U1.

The probability of the latter event is

P (A2 = 0)× [P (U1 ≤ r2 − r1)P (A1 = 1) + P (A1 = 0)] ≥ P (A2 = 0)× P (A1 = 0) > 0.

We can generalize this argument to show that, given r such that ri+1 = ri, the probability that Bi+1 is not

differentiable at r is at least P (A1 = 0)× . . .×P (Ai = 0) > 0. Note that the condition ri+1 = ri is equivalent

to xi = 0.

Corollary 2. If the show-up function p(t) is differentiable and Assumption A holds, then the function f(x)

in (14) is differentiable on the interior of the simplex X .

Proof. It immediately follows from (11) and (14) that, if the show-up function p(t) is differentiable, then

f(x) is differentiable so is EU [TC(x, ωA,U)]. By virtue of Theorem 1, we see that the conditions es-

14



tablished in Shapiro, Dentcheva, and Ruszczynski (2009, Theorem 7.49) are fulfilled, which ensures that

EU [TC(x, ωA,U)] is differentiable and, moreover, ∇EU [TC(x, ωA,U)] = EU [∇TC(x, ωA,U)].

Remark 2. When there are no no-shows—i.e., all show-up probabilities are equal to one—the resulting

model is very similar to that studied by Homem-de-Mello, Shapiro, and Spearman (1999), who discuss

methods to find the optimal release times of jobs in a manufacturing plant. In that paper it is shown

that the objective function is differentiable whenever the service times have continuous distributions, and

a gradient-based algorithm is presented to solve the problem. However, the presence of no-shows in our

problem, complicated further by the fact that the show-up probabilities depend on the scheduled time of

arrivals, makes the present problem significantly harder. Indeed, as mentioned earlier the problem is non-

convex, unlike the problem in Homem-de-Mello et al. (1999); moreover, the techniques used in that paper

to show differentiability do not apply to our case because a crucial assumption in Homem-de-Mello et al.

(1999) is that the service times have continuous distributions. In our setting, however, although the service

times also have continuous distributions, the corresponding service time is zero if a patient does not show

up. Consequently, when combined with the show-up variables, the service times may have an atom at zero

and thus the aforementioned assumption in Homem-de-Mello et al. (1999) does not hold.

With the above results at hand, we can now write the derivatives of f(x) in (14) as follows:

∇f(x) = ∇

 ∑
ωA∈{0,1}n

P (x, ωA)EU [TC(x, ωA,U)]


= ∇EU

 ∑
ωA∈{0,1}n

P (x, ωA)TC(x, ωA,U)


= EU

∇
 ∑
ωA∈{0,1}n

P (x, ωA)TC(x, ωA,U)


= EU [∇ϕ(U,x)] , (26)

where ϕ(U,x) was defined in (12).

Note that, in principle, having an expression for ∇ϕ (U,x) would allow us to estimate ∇f(x) by sampling

from the distribution of service times and calculating the sample average estimator of the right-hand side of

(26). However, obtaining the derivatives of ϕ (U,x) is not trivial because it explicitly considers all attendance
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scenarios. Indeed, by using (12) we can compute the derivative of ϕ(U,x) with respect to xk as

∂ϕ (U,x)
∂ xk

=
∑

ωA∈{0,1}n

[
∂TC (x, ωA,U)

∂ xk
·

(
n∏
i=1

Pi(x, ωAi)
)

+

+ TC (x, ωA,U) ·
n∑
j=1

∂Pj(x, ωAj )
∂ xk

·

 n∏
i: i6=j

Pi(x, ωAi)

 ,
so we see that the expression involves the explicit enumeration of all attendance scenarios. However, by

exploiting the structure of this expression we can derive an alternative approach. For a fixed attendance

scenario ωA and a realization of service times U, define the function

ψk (x, ωA,U) := ∂TC (x, ωA,U)
∂ xk

+ TC (x, ωA,U) ·

 n∑
j=1

∂Pj(x, ωAj )
∂ xk

· 1
Pj(x, ωAj )

 . (27)

Then, we can write the derivative of ϕ with respect to xk as

∂ϕ (U,x)
∂ xk

=
∑

ωA∈{0,1}n
ψk (x, ωA,U) ·

n∏
i=1

Pi(x, ωAi) = EA(x) [ψk (x,A(x),U) |U] . (28)

The reformulation of the derivative in (28) is the fundamental step that allows us to obtain an unbi-

ased sampling estimator on the gradient of the objective function f . Recall that from (26) that ∇f(x) =

EU [∇ϕ(U,x)]. Then, by using (28) we can write

∂f(x)
∂ xk

= EU

[
∂ϕ (U,x)
∂ xk

]
= EU

[
EA(x) [ψk (x,A(x),U) |U]

]
= EA(x),U [ψk (x,A(x),U)] , (29)

where the last equality follows from the tower property of expectations. The gradient of the objective

function can now be estimated though simulating the vectors of random service times and no-shows. This is

summarized in the theorem below.

Theorem 3. Let {(As(x),Us)}, s = 1, ..., S be a sample of size S of the bi-variate random vector (A(x),U)

(note that the samples of A(x) depend on the particular point x). Then, a consistent and unbiased estimator

of ∂f(x)
∂ xk

can be obtained as

∂f(x)
∂ xk

≈ 1
S

S∑
s=1

ψk (x,As(x),Us) (30)

where ψk is defined in (27).

The result in Theorem 3 allows us to use a sampling-based optimization approach to solve the original

problem, as discussed in the next section.
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5 Algorithms

The analysis of the problem has unveiled some of its features: a non-linear non-convex objective function and

a compact and convex feasible set. Using the techniques described in Section 4, a sampling-based estimator

of the gradient is obtained in order to apply a gradient-based method for non-linear stochastic optimization.

In Section 5.1 we discuss one such method available in the literature. However, we need to adapt the method

since our problem is constrained, the discussion of which is presented in Section 5.2.

5.1 Description of the STRONG Method

The algorithm we propose to solve this problem is built upon the STRONG algorithm proposed by Chang

et al. (2013). STRONG, or Stochastic Trust-Region Response-Surface Method, is an algorithm designed

for unconstrained stochastic optimization that is proved to converge to critical points. The strategy of

the algorithm is to explore small subregions, i.e., the trust region, to find new candidate solutions. The

improvement of a candidate solution is evaluated under statistical tests. It contains two stages in the outer

loop and an inner loop. When the algorithm is on Stage I a linear approximation of the objective function

is built with the gradient estimator. Then, a subproblem is solved with this approximation in which the

feasible region is delimited by the trust region. Then, simulations runs are required to estimate the expected

total cost of the candidate solution. The improvement is assessed with two tests: Ratio-Comparison (RC)

Test and Sufficient-Reduction Test. The RC test intends to test whether the trust region is trustworthy while

the second test intends to tell whether there is sufficient reduction. After the evaluation of the candidate

solution, a new trust region size is defined, in particular, the size of the trust region diminishes when no

satisfactory solution is found 1. If no satisfactory solution is found on this stage, the algorithm goes to the

Inner Loop where the sample size is increased to ensure that a better solution is found or the stopping

criterion is satisfied.

A brief description of the steps of the algorithm is outlined below (see Chang et al. (2013)):

Step 0: Set the iteration counter k = 0. Select an initial solution x0, an initial sample size n0 for the current

solution to estimate the objective function. Select a trust region size ∆0, a switch threshold size ∆̃

and the other algorithm parameters.

Step 1: Let k = k+1. Denote ∆k as the size the the new trust region. If ∆k > ∆̃, go to Stage I. Otherwise,

go to Stage II.

Step 2: If the termination criterion is satisfied, stop and return the solution. Otherwise, go to Step 1.
1 In the original description of STRONG in Chang et al. (2013), a quadratic approximation is also used. However, in our

implementation, the quadratic approximation is not used since the estimators of the Hessian matrix are too noisy.
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Convergence properties and further details of STRONG are described in Chang et al. (2013).

5.2 Projected Gradient Path Algorithm

As it was previously discussed, STRONG is an algorithm designed for an unconstrained setting. However,

the appointment scheduling problem is constrained.

Generally, the nature of the feasible set strongly determines the methods that can be used to find solutions

to optimization problems. As Conn et al. (2000) point out, the geometry of the feasible region is relevant to

the ease of projecting unfeasible solutions to the feasible set. In Conn et al. (2000, Chapter 12) an algorithm

under the trust-region methodology for deterministic problems with convex constraints is presented. The

technique is based on a line search along the projected-gradient path to compute a generalized Cauchy point

to find improved and feasible solutions. The purpose of this algorithm is to find, according to a given

approximation of the objective function, a step from the current solution that gives a feasible solution and

leads to a decrease in the objective function.

We first give a brief description of the algorithm in Conn et al. (2000), further details can be found in that

reference. The projected gradient path for any x onto the feasible set X is given by the following expression,

for all t ≥ 0:

q(t,x) := ΠX (x− t∇f(x)) , (31)

where ΠX (x) is the Euclidean projection of x onto X . At each iteration ν, given the current feasible

solution xν , let mν(xν) be an approximation of the objective function f at xν (in our case it is an affine

approximation), gν an estimator of the gradient ∇f(xν), and ∆ν the trust region size. The algorithm can

be outlined as follows:

Step 0: Define required parameters. Set tmin = 0, tmax =∞, t0 = ∆ν

‖gν‖ and j = 0.

Step 1: Compute the candidate point q(tj ,xν) = ΠX (xν − tjgν), and evaluate mν (q(tj ,xν)).

Step 2: Set j := j + 1, update the value of tj , tmin = 0 and/or tmax = ∞ and go back to Step 1 until (i)

the candidate point lies within the trust region, (ii) there is sufficient decrease in the approximation

mν (from the current point to the candidate point) and (iii) at least one of the following three

conditions hold: (a) the candidate point is not too close to the current point, (b) the decrease in the

approximation mν is not too large, (c) the norm of the projection of gν onto the tangent cone at

q(tj ,xν) with respect to the feasible set is sufficiently small.

We actually implemented a variation of the above algorithm that does not require the calculation of the

projection onto the tangent cone. To describe that change, we need to define some notation. Let sν(tj)
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denote the vector q(tj ,xν) − xν , and let ΠT (x) denote the projection operator onto the tangent cone at a

point x with respect to X . In Conn et al. (2000), the condition representing criterion (c) above is expressed

as

∥∥ΠT (q(tj ,xν)) [−gν ]
∥∥ ≤ κepp

|〈gν , sν(tj)〉|
∆ν

, (32)

where κepp ∈ (0, 1
2 ) is a constant. Given the current solution xν ∈ X and θ ≥ 0, let M(xν , θ) denote the

criticality measure defined in Conn et al. (2000) as

M(xν , θ) :=
∣∣∣ min {〈gν , d〉 : xν + d ∈ X , ‖d‖ ≤ θ}

∣∣∣. (33)

In our implementation we replaced condition (32) with

M(xν , θj)− |〈gν , sν(tj)〉|
2θj

≤ κepp
|〈gν , sν(tj)〉|

∆ν
, (34)

where θj := ‖sν(tj)‖ + 1. We show now that the replacement of (32) with (34) does not affect the proof of

convergence of Conn et al. (2000), provided some extra condition is imposed.

Proposition 4. Suppose that (34) is used in place of (32) in Algorithm 12.2.2 of Conn et al. (2000). Then,

the arguments in the proof of Theorems 12.2.1 and 12.2.2 of Conn et al. (2000) remain valid, provided that

the constants κfrd and κepp that appear in the algorithm satisfy the condition

κfrd ≤
2

4κepp + 1 . (35)

Proof. By Theorem 12.1.5 in Conn et al. (2000) and the fact that θj > ‖sν(tj)‖, we have the inequality

M(xν , θj)− |〈gν , sν(tj)〉|
2θj

≤
∥∥ΠT (q(tj ,xν)) [−gν ]

∥∥ . (36)

As argued in the proof of Theorem 12.2.1 in Conn et al. (2000), condition (32) holds for j sufficiently large

when tmax =∞ for all j. Thus, in that case it follows from (36) that (34) holds as well and so the arguments

in aforementioned proof remain valid.

Consider now Theorem 12.2.2 in Conn et al. (2000). Notice initially that we have ‖sν(tj)‖ ≤ ∆ν , as this

is assumed by that theorem. Thus, (34) implies that

M(xν , θj) ≤
2(∆ν + 1)κepp|〈gν , sν(tj)〉|

∆ν
+ |〈gν , sν(tj)〉|

19



and thus we have

|〈gν , sν(tj)〉| ≥
∆ν

2(∆ν + 1)κepp + ∆ν
M(xν , θj) ≥

∆ν

2(∆ν + 1)κepp + ∆ν
M(xν , 1), (37)

where the last inequality follows the fact that M(xν , ·) is a nondecreasing function (Conn et al., 2000,

Theorem 12.1.5) and θj ≥ 1. It suffices now to show that (35) and (37) together imply that

|〈gν , sν(tj)〉| ≥
1
2κfrd min(∆ν , 1)M(xν , 1), (38)

where κfrd is another constant used in the algorithm. Note that (38) is exactly the inequality used in the

proof of Theorem 12.2.2 of Conn et al. (2000), which is the basis for convergence of the trust region method.

Indeed, suppose that ∆ν > 0 andM(xν , 1) > 0 (otherwise, (38) already holds trivially). When (37) holds,

a sufficient condition for (38) to hold is that

∆ν

2(∆ν + 1)κepp + ∆ν
M(xν , 1) ≥ 1

2κfrd min(∆ν , 1)M(xν , 1),

i.e.,

κfrd ≤
2∆ν

2(∆ν + 1)κepp + ∆ν

1
min(∆ν , 1) . (39)

It is easy to see that the function on the right-hand side of (39) is continuous for ∆ν > 0, strictly decreasing

for ∆ν ∈ (0, 1] and strictly increasing for ∆ν ≥ 1, thus it attains its minimum at ∆ν = 1. Therefore, (39)

holds for all ∆ν > 0 provided that (35) holds. It follows that conditions (35) and (37) together imply (38),

and so the arguments in the proof of Theorem 12.2.2 of Conn et al. (2000) can be applied and convergence

is ensured.

Remark 3. The contribution of Proposition 4 is general and goes beyond the particular problem discussed

in this paper. The value of the contribution is that it completely avoids the projection onto tangent cones,

which can be very difficult in some problems. As shown in Proposition 4, the only price to pay for not

dealing with tangent cones is a mild restriction on the constants used in the algorithm. Note also that the

specification of the constants in Conn et al. (2000) dictate that κfrd ∈ (0, 1) and κepp ∈ (0, 1
2 ); thus, by

choosing κepp ≤ 1
4 , we ensure that (35) holds. In our implementation we used κepp = 0.125.

Through the incorporation of the proposed methodology by Conn et al. (2000), which is designed to find

improved and feasible solutions in a constrained context, we can then adapt STRONG to our non-linear

non-convex constrained stochastic optimization problem. However, convergence is ensured only to stationary
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points, so the algorithm could end up at a local minimum. Since there is no guarantee of global optimality,

a multi-start strategy is adopted. Then, simulation is used to compare the obtained solutions and select the

best one.

6 Computational Studies

In this section, we apply the projected gradient path (PGP) method to explore the insights into scheduling

solutions under time-dependent show-up probabilities. In Section 6.1, we describe the experimental design and

computational setup. We then compare our scheduling solutions with those reported in Hassin and Mendel

(2008) and its performance with that of the distributionally robust optimization (DRO) model developed

in Kong et al. (2019). In Section 6.3, we explore scheduling patterns under different show-up functions, as

compared to the static case, and perform an out-of-sample simulation study to demonstrate the value of

incorporating patient schedule-dependent no-show behavior.

6.1 Experimental Design and Computational Setup

In the basic experiment set-up, we solve for the scheduling solutions for 12 patients in a clinic session that

spans six time units. Three types of costs occur in the system, which are costs of patient waiting time,

physician’s idle time and overtime. Following Zacharias and Pinedo (2014) and Kong et al. (2019), we set

the three costs to be 0.1, 1 and 1.5, respectively.

Both uncertainties in service time and attendance status are incorporated in the computational study.

We solve for scheduling solutions under three types of service time distributions and six types of attendance

functions. The three types of service distributions are exponential, log-normal, and uniform. Following the

setting in Hassin and Mendel (2008), both the mean and the standard deviation of the service duration are set

to be 1. As mentioned before, our method has the advantage of dealing with any smooth show-up functions.

As an illustration, we consider six different show-up patterns: constant, increasing, decreasing, quadratic

concave, quadratic convex, and cosine. Figure 2 depicts the show-up rates during a session of six time units.

We set 0.1 as the lowest show-up probability and 0.9 the highest. Note that the average show-up rate is 0.5

in the increasing, decreasing, and cosine cases, 0.67 in the concave case and 0.33 in the convex case.

The parameters used in the algorithms are presented in Appendix A. We randomly select 20 different

starting points, run the Gradient Projection algorithms to generate scheduling solutions and then use different

sample sets (sample size 1 million) to estimate the total expected costs of all the scheduling solutions and

their corresponding 95% confidence intervals. We then select the schedule that generates the least expected

total cost. If the confidence interval of the selected schedule overlaps with that of the “second-best" schedule
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Figure 2: Show-up Probabilities as a Function of Time (Y-axis: Show-up Probability; X-axis: Time)

and they exhibit significantly different patterns, more starting points will be added and the same procedure

follows.

6.2 Performance Evaluation

We first apply our algorithm to the setting of Hassin and Mendel (2008) and compare our solutions to

those reported in their paper. Hassin and Mendel study the ASP with static no-shows, i.e., the show-up

probability remains the same across the scheduling horizon. Its objective function minimizes the weighted

sum of patients’ waiting time and server’s available time. Figures 1 and 2 in that paper report the optimal

schedules with 10 patients and show-up rates 0.7 and 0.3 under different values of γ. γ(= cs
cs+cw ) is defined

as the relative cost parameter, where cw denotes the unit waiting cost and cs the unit server’s availability

cost.

Note that server’s availability counts from time zero to service starting time of the last patient plus

possible service time (if the last patient shows up). In our paper, it is equivalent to: 1) set the unit overtime

cost (co) to be zero and the unit idle time cost cI the same as the unit server’s availability cost cs ; 2) ignore

the idle time (if any) between the service ending time of the last patient and the end of the session; and 3)

ask the first patient to arrive at time zero. Since the session length does not play a role in the objective

function here, we set the session length T = 1000 to make sure that it does not constrain the choice of the

inter-arrival times. Figures 3a and 3c demonstrate the scheduling solutions under our approach and Figures

3b and 3d show the optimal schedules reported in Hassin and Mendel (2008). Comparing two sets of figures,
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we can see that the schedule solutions derived by our approach are very close (in terms of both pattern and

absolute values) to the optimal schedules in Hassin and Mendel (2008). This shows that our method can

generate near-optimal solutions when the show-up probability is constant over the scheduling horizon.
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Figure 3: Comparison of Schedules under the PGP Algorithm and in Hassin and Mendel (2008) with 10
Patients, Different Show-up Probabilities, and Different Relative Cost Parameters

Next, we compare our PGP method with the DRO model reported by Kong et al. (2019) under the time-

dependent show-up probabilities. To increase the validity of comparison, we set the number of patients to

be 8, 10, 12, and 14 in a clinic session of six time units in this particular subsection. We consider two cases:

increasing and decreasing show-up probabilities. In the increasing case, the show-up probability increases

from 0.1 to 0.9 while the probability drops from 0.9 to 0.1 in the decreasing case. Both cases are solved using

the PGP method under exponential, uniform and log-normal service distribution with mean 1 and standard

deviation 1, whereas the robust method solves the problem using the same first and second moments. We

then run out-of-sample simulations to estimate the expected total costs of the obtained scheduling solutions,

assuming that the service times follow a log-normal distribution.

Table 2 shows the expected total costs and performance improvement achieved by using the PGP method.

Interestingly, significant performance improvements are observed in the decreasing case (33.89% to 49.84%)
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Service Show-up (Out-of-Sample) Log-Normal
Distribution Function 8 10 12 14

Increasing
PGP 4.1441 3.9632 3.8445 3.7389
Robust 4.2361 4.1358 3.9954 3.9490

(In Sample) Improvement 2.17% 4.17% 3.78% 5.32%
Exponential

Decreasing
PGP 3.3721 3.7107 3.8151 4.1296
Robust 3.2404 3.5894 5.8215 8.1927

Improvement -4.06% -3.38% 34.47% 49.59%

Increasing
PGP 4.1153 3.951 3.8279 3.7352
Robust 4.2361 4.1358 3.9954 3.9490

(In Sample) Improvement 2.87% 4.47% 4.19% 5.41%
Log-Normal

Decreasing
PGP 3.1578 3.4637 3.7918 4.1099
Robust 3.2404 3.5894 5.8215 8.1927

Improvement 2.57% 3.5% 34.87% 49.84%

Increasing
PGP 4.4191 4.2138 4.0138 3.9612
Robust 4.2361 4.1358 3.9954 3.9490

(In Sample) Improvement -4.14% -1.85% -0.46% 0.31%
Uniform

Decreasing
PGP 3.1629 3.5393 3.8487 4.1553
Robust 3.2404 3.5894 5.8215 8.1927

Improvement 2.39% 1.40% 33.89% 49.28%

Table 2: Total Expected Costs under Scheduling Solutions Generated by Robust Optimization and Gradient
Projection Methods: Exponential, uniform, log-normal Distribution with mean 1 and standard deviation 1

when the number of patients is larger; for smaller number of patients, there is a slight decrease (-4.14% to

-1.85%) for the exponential and uniform service distributions. The reason is that the robust approach solves

for the best solution under the worst-case probability distribution within the ambiguity set, so that it tends to

be conservative under some cases. For example, when the system is very crowded, the robust solution assigns

almost all patients to time slot where the show-up rate is the lowest. In the increasing case, performance

improvement is moderate (2.17% to 5.41%) but consistent for exponential and log-normal distributions. In

the case of uniform distributions, the DRO model appears to do a better job since, by design, it protects

again misspecification of the probability distribution; indeed, since the out-of-sample distribution is log-

normal, when the in-sample distribution is assumed to be uniform there is a high degree of misspecification.

Still, it is interesting to notice that in the decreasing case the protection against misspecification does not

compensate for the excess of conservatism, and consequently the solutions produced by our approach beat

the DRO solutions by a large margin for the cases with higher number of patients.

6.3 Scheduling Patterns under Different Show-up Functions

We proceed to solve for the scheduling solutions under the six different show-up functions and three different

service time distributions using our method. Figure 4 shows the arrival times of the 12 patients in a clinical

session, together with the corresponding show-up rate at the time of arrival. Note that the results shown are

solved under exponential service distribution and similar results are observed under two other distributions

and are reported in Appendix B. As we can see from Figure 4, a front loading pattern is observed when
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Figure 4: Scheduling Decisions under Different Show-up Patterns and Exponential Service Distribution (Y-
axis: show-up probability; X-axis: time of arrivals)

there is a non-decreasing show-up function at the beginning, including Constant, Increasing, and Quadratic

Concave. Interestingly, a load of patients also appear at the beginning of the first increasing section of the

cosine pattern. Patients are allocated to the front or to the low show-up time slots, possibly to reduce the

workload and thus to reduce physician overtime. It is worthwhile noting that few patients are scheduled to

arrive in the latter half session, which is probably due to due to the high probability of show-up and the

uncertainty in service time. This strategy will result in, on average, less overtime and a balanced idle time

and waiting time.

The front-load pattern, however, disappears when a decreasing function is involved at the beginning,

including patterns Decreasing, Quadratic Convex and Cosine. Under those cases, most patients are more

equally allocated across the decreasing time frame, exhibiting a spreading-out pattern. Also, when a decreas-

ing function is involved in the second half of the session (Decreasing and Concave), patients are in general

scheduled to arrive later. The observations could probably be explained by two reasons: First, a higher

show-up rate at the beginning of the session may probably results in patient waiting queue, the burden of

which can be mitigated by spreading patients across the session; second, assigning patients to lower show-up

time (towards the end of the session) can reduce the workload of the system.

Next, we explore the patterns of the inter-arrival times under different show-up functions. Figure 5 shows

patient inter-arrivals under exponential service time and results under two other distributions are reported

in Appendix B. Under each show-up pattern, 13 points are presented: The first one shows the arrival time
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Figure 5: Inter-Arrival Time of Patients under Different Show-up Patterns and Exponential Service Distri-
bution (Y-axis: inter-arrival time ; X-axis: patients that arrives in a sequence).

of the first patient and subsequent point i (i > 1) indicates the inter-arrival time between patient i and i+ 1

and the last point means the service time allocated to the last patient.

The dome-shaped pattern in the inter-arrival times has been well reported in the previous literature

on standard appointment scheduling model where no-show is not considered. Denton and Gupta (2003),

Robinson and Chen (2003) and Hassin and Mendel (2008) observe similar patterns when patient no-show is

constant. The left-upper chart in Figure 5 depicts the inter-arrival times for the Constant, Increasing and

Decreasing cases. While the inter-arrivals times show in general an increasing trend in both the constant

and the increasing case, a dome-shape exists in the decreasing case. Moreover, the decreasing case allocates

much larger inter-arrivals times to patient arriving in the middle of the session, compared to the two other

cases.

Compared to the constant case, the schedule under the concave case shows a delayed dome-shape. It

assigns more patients to come at the beginning of the session and then spread the patients across the session.

The schedule under the convex case, however, allocates less patients to the beginning of the session, at

which time the show-up rate is high. Note that although the schedules under constant and convex cases

seem similar, their performance under the convex show-up environment may differ greatly. We will show the

performance comparison later. In the cosine case, the inter-arrival times for the first few patients are nigher

and then almost zeros except the last patients, as compared to the constant case. Besides, a big gap is left

from the last arrival to the end of the session.
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The Value of Incorporating Patient Schedule-Dependent No-Show Behavior In the previous

subsections, we have validated the performance of the algorithm and examined the scheduling patterns under

different show-up functions. Finally we investigate the value of incorporating the patient schedule-dependent

no-show behavior, i.e., the performance improvement under variant show-up probabilities compared to con-

stant show-up rates. To do so, we use out-of-sample Monte-Carlo simulation to estimate the total expected

system costs under the solutions generated from our methods. Table 3 presents the expected total cost of

the obtained scheduled for each case. This value was approximated with one million simulations for each

schedule. Additionally, Table 3 presents the expected total cost when applying the solution given by the

constant show-up probability to each case.

Service Show-up Total Expected Cost Cost ReductionDistribution Pattern Static Schedule Time-Dependent

Exponential

Increasing 4.0412 3.87 4.24%
Decreasing 6.9319 3.9320 43.28%
Concave 5.2676 3.7858 28.13%
Convex 5.0302 3.2623 35.15%
Cosine 5.4027 3.2211 40.38%

Log-Normal

Increasing 4.0522 3.8299 5.49%
Decreasing 6.2572 3.7883 39.42%
Concave 4.8141 3.7419 22.39%
Convex 4.6497 3.2400 30.32%
Cosine 4.8770 3.2405 33.56%

Uniform

Increasing 2.9967 2.6086 12.82%
Decreasing 4.5529 2.1409 52.98%
Concave 4.1829 1.9239 54.01%
Convex 2.2689 1.9718 13.09%
Cosine 3.3093 1.6796 49.27%

Table 3: Value of Time-Dependent Schedule

These results show an average cost reduction of 30.97% when assumption of constant show-up probability

is broken, having the highest percentage of reduction (54.01%) under the concave case and the lowest under

the increasing case with a reduction of 4.24%.

7 Conclusions

This paper studies the appointment scheduling problem with random service time and patient time-dependent

no-show behavior. This problem is difficult due to its non-convex nature and little work has done on this

topic. Limited previous literature either rely on heuristics or approximations to solve this problem and have

obvious limitations. In this paper, we address this problem using simulation optimization approach. As an

important first step, we derive the gradient estimator of the objective function, and then develop a projected

gradient path method to solve the constrained stochastic optimization problem under decision-dependent

uncertainties. The PGP method is built upon two existing methods (STRONG and Cauchy line search)
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originally designed for unconstrained and deterministic optimization problems. When adapting the Cauchy

line search, we made an important modification that significantly simplifies the computation. To the best of

our knowledge, this is the first work that uses a simulation optimization approach method to solve a class of

stochastic optimization problems with decision-dependent uncertainties.

Solutions obtained from six cases show a considerable difference between the solutions of each particular

no-show behavior scenario analyzed. The effect of assuming a constant show-up probability was studied,

obtaining significant cost reductions when breaking this assumption. It is important to note that since the

objective function is non-linear and non-convex, a multi-start strategy was used with the purpose of finding a

near local minimum. Due to the complexity of the problem, it is not possible to ensure a global optimality for

the solutions. Future work is needed on including this endogenous uncertainty to different issues on patients

scheduling like online appointment scheduling in which the decisions have to be taken sequentially according

to the demand of patients.

Furthermore, other sources that might affect the show-up probability need attention. Heterogeneous

patients characteristics is an important extension. Likewise, other sources of uncertainty as patients unpunc-

tuality and cancellations can be analyzed. We consider an off-line scheduling problem, assuming that the

system already knows which patients are coming and do not consider patient non-punctual arrivals and walk-

in patients. Instead, we focus on providing a general guideline to appointment schedule design in the long

run. In the objective function, we do not explicitly consider the revenues generated from seeing patients but

use the idle time to implicitly capture it. Theoretically, if patients are assigned to those periods during which

the no-show rates are higher, less patients would show up, leading to higher idle cost, which is equivalent to

a revenue loss.
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Appendices

A Parameters in the Algorithms

The parameters used in the algorithms are presented in Table 4. The first eight parameters are required for
the STRONG algorithm and the last four are required for the PGP method. A detailed explanation of the
definition, purpose and conditions of these parameters can be found in Chang et al. (2013) and Conn et al.
(2000).

STRONG Algorithm PGP Method
Parameters Value Parameters Value

η0 0.01 κepp 0.125
η1 0.30 κlbs 0.95
γ1 0.95 κubs 0.55
γ2 1.10 κfrd 0.75
∆0 2.15
∆̃ 1.15
n0 5,000
m0 15,000

Table 4: Algorithm Parameters

B Scheduling Solutions under Log-normal and Uniform Distribu-
tions

We present in Figures 7-10 the scheduling solutions (both arrival and inter-arrival times) under lognormal and
uniform distributions under the six show-up functions: constant, increasing, decreasing, quadratic concave,
quadratic convex, and cosine. We can see that the scheduling solutions have similar patterns as those under
exponential service time distribution.

31



0 2 4 6

-0.5

0

0.5

1

1.5

Constant

0 2 4 6

0

0.2

0.4

0.6

0.8

1

Increasing

0 2 4 6

0

0.2

0.4

0.6

0.8

1

Decreasing

0 2 4 6

0

0.2

0.4

0.6

0.8

1

Concave

0 2 4 6

0

0.2

0.4

0.6

0.8

1

Convex

0 2 4 6

0

0.2

0.4

0.6

0.8

1

Cosine

Figure 6: Scheduling Decisions under Different Show-up Patterns and Log-normal Service Distribution (Y-
axis: show-up probability; X-axis: time of arrivals)
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Figure 7: Scheduling Decisions under Different Show-up Patterns and Uniform Service Distribution (Y-axis:
show-up probability; X-axis: time of arrivals)
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Figure 8: Inter-Arrival Time of Patients under Different Show-up Patterns and Log-Normal Service Distri-
bution (Y-axis: inter-arrival time ; X-axis: patients that arrives in a sequence).
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Figure 9: Inter-Arrival Time of Patients under Different Show-up Patterns and Uniform Service Distribution
(Y-axis: inter-arrival time ; X-axis: patients that arrives in a sequence).
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