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Abstract18

Stochastic methods have been typically used for the design and operations of hy-19

draulic infrastructure. They allow decision makers to evaluate existing or new infrastruc-20

ture under different possible scenarios, giving them the flexibility and tools needed in21

decision making. In this paper, we present a novel stochastic streamflow simulation ap-22

proach able to replicate both temporal and spatial dependencies from the original data23

in a multi-site basin context. The proposed model is a multi-site extension of the mod-24

ified Fractional Gaussian Noise (mFGN) model which is well-known to be efficient to main-25

tain periodic correlation for several time lags, but presents shortcomings in preserving26

the spatial correlation. Our method, called Weighted-mFGN (WmFGN), incorporates27

spatial dependency into streamflows simulated with mFGN by relying on the Cholesky28

decomposition of the spatial correlation matrix of the historical streamflow records. As29

the order in which the decomposition steps are performed (temporal then spatial, or vice-30

versa) affects the performance in terms of preserving the temporal and spatial correla-31

tion, our method searches for an optimal convex combination of the resulting correla-32

tion matrices. The result is a Pareto-curve that indicates the optimal weights of the con-33

vex combination depending on the importance given by the user to spatial and tempo-34

ral correlations. The model is applied to Bio-bio River basin (Chile), where the results35

show that the WmFGN maintains the qualities of the single-site mFGN, while signif-36

icantly improving spatial correlation.37

1 Introduction38

Stochastic methods have been typically used to improve and evaluate the design39

and operation of existing or new hydraulic infrastructures, e.g., the evaluation of reser-40

voir performance using stochastic streamflows by Hashimoto et al. (1982). Stochastic stream-41

flow generation allows the evaluation of infrastructure, under different scenarios, of us-42

age, public policies, operation, and even under climate change conditions (Kirsch et al.,43

2013). Due to the new challenges that water resources are facing, such as climate change,44

as well as changes in public policies in the changing world, robust stochastic methods45

able to simulate synthetic streamflows consistent with historical records, capable of in-46

corporating possible changes are required.47
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Multiple synthetic streamflow generation models have been developed in the lit-48

erature, to answer both to scientific and decision maker needs of scenarios evaluation.49

These stochastic generation models work at a single or multi-site scale to replicate the50

statistical behaviour of streamflows. The advantage of multi-site models is that they can51

evaluate scenarios over an entire basin at the same time. There have been several dis-52

cussions in literature to determine the most complete stochastic multi-site streamflow53

model, without getting to consensus (Srinivas & Srinivasan, 2005). To the best of our54

knowledge, methods always fail for simulating muti-site streamflows on at least one di-55

mension, e.g., temporal correlation, capture of seasonality, spatial correlation, or long-56

run dependencies. In this paper, we present a novel stochastic streamflow simulation ap-57

proach able to replicate both temporal and spatial dependencies from the original data58

in a multi-site basin context.59

Initial studies in stochastic hydrology were based on booststrap techniques (Efron60

& Tibshirani, 1994), generating time-series from the random sampling with replacement61

of historical records that lost any autocorrelation specific to the original series. This strat-62

egy was followed by several variants such as the method of moving blocks Bootstrap (Vogel63

& Shallcross, 1996; Srinivas & Srinivasan, 2005) and nearest neighbor Bootstrap (Lall64

& Sharma, 1996). The former method only partially corrects the autocorrelation issues,65

and the latter depends on the availability of historical data, which is a drawback if one66

wants to simulate stochastic change conditions as projected in (IPCC, 2021). In paral-67

lel to Bootstrap methods, the family of autoregressive (AR) models arose as a first or-68

der Markovian model (Thomas Harold, 1962). These methods later evolved with mul-69

tiple related works (Matalas, 1967; Moreau & Pyatt, 1970; Jettmar & Young, 1975; Young70

& Jettmar, 1976) to formalize the p-order AR (AR(p)) models (Box et al., 2015), and71

the autoregressive moving average model (ARMA). Autorregressive models adequately72

incorporate autocorrelation in the time-series, but they assume that the autocorrelation73

is constant in time. This is an important limitation for the simulation of shorter time74

step streamflows (e.g. less than one year), as autocorrelation does change over the year,75

due to seasonality. In view of the above, periodic autoregressive models (PAR(p)) have76

been proposed (Pagano, 1978; Parzen & Pagano, 1979; Salas et al., 1982), which are AR(p)77

models using sets of autocorrelations specific to each time period (e.g., weekly or monthly).78

However, even when the PAR(p) manages to circumvent the AR(p) models autocorre-79
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lation problem, doubts arise as to how long the period should be (e.g. monthly or sea-80

sonally), or which parameter estimation methodology should be used (Noakes et al., 1985).81

More recently, Copula-based autorregresive models have been proposed for multi-82

site runoff synthetic generation (Chen et al., 2015; Lee & Salas, 2011; Hao & Singh, 2013;83

de Almeida Pereira & Veiga, 2019; Pereira et al., 2017; Reddy & Ganguli, 2012). A ma-84

jor strength of the Copula-based models is their flexibility given that they adjust the cop-85

ulas to historical input data by using marginal distribution functions. These functions86

allow to simulate streamflows with scarce available information, showing great sensitiv-87

ity in the identification of nonlinear dependencies in the sampling, maintaining the struc-88

tural benefits and limitations of the PAR(p) or ARMA models. A monthly copulas model89

has been proposed in Xu et al. (2022) for flow forecasting that is highly capable of pre-90

dicting future short and medium-term flows in non-stationary contexts. Note that flow91

forecasting is used for decision making, but some strategic decisions require long-term92

simulations, which are not addressed by flow forecasting methods.93

Attempts to integrate both temporal and spatial correlations for synthetic runoff94

generation have been proposed with trivariate copulas by Chen et al. (2015), which sim-95

ulates first a single streamflow (Lee & Salas, 2011), and then adds the multi-site corre-96

lation. Trivariate copulas are able to preserve cross-correlation between different trib-97

utaries at lag 0, and consistently replicate historical characteristics of the different sites98

such as mean, variance and autocorrelations in lags 1 and 2 (with larger but acceptable99

differences in the latter). However, similarly to Hao and Singh (2013), the marginal prop-100

erties of the copula cannot be directly estimated from data. They must be numerically101

approximated, which is a drawback in the use of the models as stated in (de Almeida Pereira102

& Veiga, 2019). Another application was developed by Pereira et al. (2017) through a103

two-stage model in which simulations for different sites (39 hydropower plants) are gen-104

erated independently with a PAR(p) model. The spatial correlations are then incorpo-105

rated in a second stage by means of vine-copulas as proposed in (Erhardt et al., 2015).106

In (de Almeida Pereira & Veiga, 2019), the authors developed a multi-site flow simula-107

tor based on copula autoregressive (COPAR) model previously used in economics (Brechmann108

& Czado, 2015). The COPAR model has a periodic component and directly solve the109

temporal and spatial relationships of the different tributaries with a multi-dimensional110

copula. As in Chen et al. (2015), it ensures spatial correlations in the simulations close111

to the historical ones up to lag 2, and mean autocorrelations consistent with the histor-112
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ical ones up to lag 5 (except for some months). The Copulas and other autoregressive113

based models have the drawback of not being sensitive enough to replicate high histor-114

ical temporal correlation (Kirsch et al., 2013).115

Other methodologies used in hydrology that deal with the simulation of temporal116

and spatial features simultaneously are introduced by Tsoukalas et al. (2018a, 2018b).117

These authors design a new family of Nataf-based models which is an extension of Nataf’s118

joint distribution models (Nataf, 1962) initially implemented to generate random vec-119

tors with arbitrary distributions in independent series but with cross-correlation. This120

process starts with the generation of random data from Gaussian copulas to then trans-121

form the marginal distribution with the inverse cumulative distribution function. The122

SMARTA (Symmetric Moving Average (neaRly) To Anything) model (Tsoukalas et al.,123

2018b) expands the capabilities of a Symmetric Moving Average (SMA), from just Gaus-124

sian distribution to almost any distribution. The SMA models are able to replicate short-125

run and long-run time dependencies in univariate as well as multivariate context, but126

are unable to incorporate cyclostationary correlation structures (i.e., seasonality or pe-127

riodicity in temporal correlation). A model which has several of the qualities of SMARTA128

and is able to capture the cyclostationary correlation structure is SPARTA (Stochastic129

Periodic AutoRegressive To Anything) (Tsoukalas et al., 2018a). SPARTA just as SMARTA130

uses a Nataf-based model, but it starts with a PAR(p) model, instead of a SMA one. These131

gives SPARTA the capability of simulating cyclostationary correlation, but it also loses132

the capability of the SMARTA of simulating long-run time dependencies.133

The long-run dependencies (LRD) are known as Hurst phenomenon (Koutsoyiannis,134

2002), which is measured with the Hurst coefficient index (H). The higher the magni-135

tude of the index, the higher the prevalence of significant autocorrelation at very high136

lags (e.g. 100 lags). A statistical model capable to capture and replicate the Hurst phe-137

nomenon is the Fractional Gaussian Noise (FGN) method (Mandelbrot & Van Ness, 1968;138

Mandelbrot & Wallis, 1968, 1969). The FGN was originally proposed as a mathemat-139

ical approach to emulate long-range dependencies seen in normally distributed data, which140

had immediate implications in hydrology. Unfortunately it was concluded that FGN fails141

in simulations longer than 100 time periods (McLeod & Hipel, 1978). Although the FGN142

can properly simulate the frequency of extreme events (Mandelbrot & Wallis, 1968), the143

previously mentioned drawback was a dead end, until Kirsch et al. (2013) proposed the144

modified Fractional Gaussian Noise (mFGN), and solved the period barrier that ham-145
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pered the use of FGN. The mFGN is able to generate univariate time series of infinite146

length, while replicating the cyclostationary correlation of it. With this model, Kirsch147

et al. (2013) demonstrated that one can use mFGN to simulate several years of stream-148

flow preserving its correlation structure. The streamflow generation with mFGN is per-149

formed by transforming the Gaussian generated data with a Log-Normal distribution.150

The method allows for additive changes in the mean and standard deviation of the time151

series, thereby making it a powerful and useful tool for climate variability and change152

studies. The mFGN approach has the advantage over autorregresive models, because it153

captures high levels of autocorrelation, cyclostationary correlation, as well as the Hurst154

phenomenon (Kirsch et al., 2013).155

The mFGN proposed by Kirsch et al. (2013) has a good performance in replicat-156

ing a single-site streamflow, but, to the best of our knowledge, there is only one study157

that tries to extend mFGN to a multi-site context, without a successful result (Herman158

et al., 2016). Herman et al. (2016) increase the likelihood of drought events by increas-159

ing the weight of low streamflows in the distribution successfully. Nonetheless, they try160

to extend the mFGN into a multi-site method by using a bootstrap resampling technique161

of historical data, which is able to preserve historical temporal correlations, but it presents162

some difficulties in preserving spatial correlation. Although there are autorregresive multi-163

site models, in a single-site streamflow generation, the mFGN has shown to outperform164

autorregresive models such as AR(p) or PAR(p) (Kirsch et al., 2013), hence the exten-165

sion of mFGN into a multi-site method would allow preserving its benefits in multi-site166

streamflow generation.167

Our main objective is to build a novel stochastic streamflow generator, which we168

call Weighted-modified Fractional Gaussian Noise (WmFGN), which is able to replicate169

historical time (i.e. short-run and long-run dependencies, as well as cyclostationary cor-170

relation) and space dependencies from the original data. The WmFGN is an extension171

of the mFGN into a multi-site method. WmFGN relies on the Cholesky decomposition172

of the spatial correlation matrix of the historical streamflow records, which is then used173

to add spatial correlation to streamflow time series simulated with mFGN. As the or-174

der in which the decomposition steps are performed (i.e., temporal then spatial, or vice-175

versa) affects the final result, our method searches for an optimal convex combination176

of the resulting matrices. The result is a Pareto-curve that indicates the optimal weights177

of the convex combination depending on the relative importance of spatial and tempo-178
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ral correlations given by the hydrological modeler. This framework represents an expan-179

sion of the mFGN to the multi-streamflow case, which is useful for long term energy plan-180

ning input, climate change assessment, water utility management, and other already proven181

applications in which synthetic streamflow time series are required.182

The paper is structured as follows. In Section 2 we present an in-depth explana-183

tion of the proposed framework and its origins, moving on in Section 3 to a case study184

in the Chilean Bio-bio river basin where the WmFGN is applied. The results are discussed185

in Section 4, and Section 5 presents concluding remarks about the capabilities of the pro-186

posed model.187

2 Methodology188

In this section we describe the Weighted-mFGN methodology we propose. Before189

that, we recall the FGN and mFGN methodologies proposed in the literature, upon which190

we build our approach. In what follows we shall assume that the monthly streamflow fol-191

lows a log-normal distribution, which is a common assumption in the literature as stream-192

flows do indeed tend to follow such a distribution in practice.193

2.1 Fractional Gaussian Noise194

We start by describing the Fractional Gaussian Noise (FGN) method (Mandelbrot195

& Van Ness, 1968; Mandelbrot & Wallis, 1968, 1969). Consider a matrix Ŷ which is pop-196

ulated with N years of historic inflow data in such a way that the hydrological years are197

set as rows, and each month is a column (it is implied that months are treated as inde-198

pendent processes Ŷ j
i = [Ŷ j

1 , ..., Ŷ
j
N ], where the superscript j ∈= 1, . . . , J stands for199

the jth month, and the subscript i indexes the years in the data):200

Ŷ =



Ŷ1,1 Ŷ1,2 Ŷ1,3 · · · Ŷ1,J

Ŷ2,1 Ŷ2,2 Ŷ2,3 · · · Ŷ2,J

Ŷ3,1 Ŷ3,2 Ŷ3,3 · · · Ŷ3,J

...
...

...
...

...

ŶN,1 ŶN,2 ŶN,3 · · · ŶN,J


(1)

As a first step, the matrix Ŷ in (1) is transformed to resemble a Normal distribu-

tion in each of its months, and then it is standardized. More specifically, let Ỹ be de-
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fined such that each element in Ỹ is the natural logarithm of Ŷ. The means and vari-

ances corresponding to each month column in Ỹ (denoted by µ̃j and σ̃2
j , respectively)

are also calculated, consolidating a new whitened seasonality matrix Y defined as fol-

lows:

Yi,j =
Ỹi,j − µ̃j

σ̃j
, i = 1, . . . , N, j = 1, . . . , J. (2)

The next step is to generate a new matrix X of size Ns×J with independent ran-

dom samples from a Normal(0,1) distribution, where Ns is the number of years to sim-

ulate. This matrix X is called the uncorrelated synthetic inflow matrix. To introduce

the time dependencies of the original streamflow time-series, the matrix Σ := Corr(Y)

is computed, which is the square and symmetric correlation matrix of the original rear-

ranged time-series containing the pairwise correlation coefficients between all the months.

The Cholesky decomposition of Σ is then computed as:

Σ = QTQ. (3)

The Cholesky decomposition in (3) is the key step of the FGN because with the result-

ing upper triangular matrix Q the uncorrelated synthetic inflow matrix can be adjusted

to capture the historic monthly temporal correlations, i.e. one computes

Z := XQ. (4)

The output matrix Z is of size Ns×J . Note that Corr(Z) ≈ Corr(Y) as desired, thereby

preserving the temporal correlation between months of each year, but not the correla-

tions across years. Finally, Z is transformed back into the original space of streamflows

by computing

Zi,j := µ̃j + Zi,j σ̃j (5)

Ẑi,j := exp(Zi,j). (6)

2.2 Modified Fractional Gaussian Noise (mFGN)201

The FGN approach described above provides a clean and simple of way to incor-

porate temporal correlations. One deficiency of the method, however, is that only con-

siders the correlations between months within the same year. To overcome that issue,

(Kirsch et al., 2013) propose a modification to the method that overlaps 6-month peri-

ods. More specifically, let Y be the matrix constructed in (1). Then, a new matrix Y′
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is built (see Figure 1a) so that the row corresponding to the ith year in Y′ contains the

last six months of year i plus the first six months of year i+1 in Y (note that Y′ is one

row shorter than Y). That is, Y′ can be constructed by applying a linear operator F

to Y as follows. Let

T :=

06×6 I6×6

I6×6 06×6

 (7)

and define the swapped data matrix S := YT. Define S1 and S2 as the left and right

halves of S, i.e.,

S = [S1 |S2] .

Now define the N − 1×N matrices

I1 :=



1 0 0 . . . 0 0

0 1 0 . . . 0 0

...

0 0 0 . . . 1 0


and I2 :=



0 1 0 . . . 0

0 0 1 . . . 0

...

0 0 0 . . . 1


.

Then we have that

Y′ = F(Y) := [I1 S1 | I2 S2] .

Let Q′ be the matrix corresponding to the Cholesky decomposition of Corr(Y′).202

Now, consider as before a matrix X of size Ns×J with independent random sam-

ples from a Normal(0,1) distribution, where Ns is one year more than the ones to be sim-

ulated, and the matrix Q corresponding to the Cholesky decomposition of Corr(Y). Then,

a new matrix X′ of size Ns − 1 × J is constructed by applying the linear operator F

defined above to X, i.e., X′:= F(X), and one computes

Z1 := XQ, Z2 := X′Q′. (8)

The final matrix Z of simulated values is then built by using the right-most columns of203

Z1 and Z2, as indicated in Figure 1b.204

2.3 Weighted modified Fractional Gaussian Noise (WmFGN)205

2.3.1 Spatial correlation integration into temporally correlated data206

The mFGN method described above yields excellent results in the sense that the207

corresponding simulated series preserve the temporal correlation of the data. The method,208

however, falls short of representing spatial correlations adequately. To circumvent this209
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1 12

7  12  1   6

Y  =

=  Y'

7  12  1   6 

Z1 = XQ

Z2 = X'Q'

=  Z

(a)

(b)

1   6  7   12

7  12  1   6 

1   6  7   12

Figure 1. (a) Example process of how to retrieve Y’ out of Y matrix (equivalent to the

obtention of X’ out of X. (b) Demonstration of how to build Z. Monthly scaled version of the

mFGN process developed in Kirsch et al. (2013)

limitation, Kirsch et al. (2013) propose a modification that uses the same random “seed”210

when simulating correlated basins. The spatial approach proposed by Kirsch et al. (2013)211

consists in applying the mFGN as described in Section 2.2, but with a slight modifica-212

tion when building X. Instead of using random Normal(0,1) numbers to fill X, one boot-213

straps values from the historical data Y. That is, for each month/year one wants to sim-214

ulate, a year is selected randomly from the historical data and the corresponding month215

of that year is used for X. The spatial correlation is then imposed by making sure the216

historical bootstrapped seed corresponds to the same month and year in each site.217

To illustrate the idea, suppose we want to generate simulated values for the months

of January, February and March in the year 2025 at two nearby sites, and that Y con-

tains the monthly records of both sites from 1981 to 2020. Then, a random selection of

years for X might choose 1992, 2005, and 1987 for January, February and March, respec-

tively, and the corresponding Y values of those months/years are used for both sites. That

is, by denoting by Xk
i,j the simulated streamflow for month j of year i at site k (and sim-
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ilarly for the historical data Y) we have:

X1
2025,1 := Y1

1992,1, X2
2025,1 := Y2

1992,1

X1
2025,2 := Y1

2005,2, X2
2025,2 := Y2

2005,2

X1
2025,3 := Y1

1987,3, X2
2025,3 := Y2

1987,3

Note that each site will have its own set of simulated values X, but the values will be218

correlated because the historical data is spatially correlated. Nevertheless, the mFGN219

distorts the spatial correlation as reported by Herman et al. (2016). Because of the lim-220

itations of mFGN in preserving spatial correlation, we propose an alternative method,221

as we describe next.222

To introduce spatial correlation to the independently simulated streamflows of each

site, we shall consider a three-dimensional version of the normalized historical inflow data

matrix Y defined in (1)-(2) so that the third dimension corresponds to each site (see Fig-

ure 2). Denote the new structure as Y, which has dimension N × J × K, where K is

the total number of sites and denote by Yk the normalized historical inflow data ma-

trix for site k. We then have that Y = [Yijk], where

Yijk := Yk
i,j , i = 1, . . . , N, j = 1, . . . , J, k = 1, . . . ,K. (9)

The main idea of our procedure is described as follows. First, we create matrices

U1, . . . ,UJ , each of dimension N×K, such that each Uj , j = 1, . . . , J , is a slice of Y

in the dimension of time, i.e., Uj = [Uj
ik], where

Uj
ik := Yi,j,k, i = 1, . . . , N, k = 1, . . . ,K. (10)

As a second step, we calculate the spatial correlation matrix Corr(Uj) and its upper tri-

angular Cholesky decomposition matrix Rj (of dimension K ×K), i.e.,

(Rj)T (Rj) = Corr(Uj). (11)

Next, we construct a three-dimensional matrix Z similarly to Y, but using the matri-

ces Zk of simulated data constructed in Section 2.2 for each site k instead of the nor-

malized data matrices Yk. As before, we define matrices V1, . . . ,VJ , each of dimension

Ns×K, such that each Vj , j = 1, . . . , J , is a slice of Z in the dimension of time, i.e..

Vj
ik := Zi,j,k, i = 1, . . . , Ns, k = 1, . . . ,K. (12)
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The key step of our procedure is the calculation of the matrices

Wj := VjRj , j = 1, . . . , J. (13)

Such a step incorporates the spatial correlation into the simulated data for each month.

Finally, we construct a three-dimensional matrix W as

Wijk := Wj
i,k, i = 1, . . . , Ns, j = 1, . . . , J, k = 1, . . . ,K. (14)

The matrix W now contains our simulated data for all sites and all months, which takes223

into account both temporal and spatial correlations, in that order. We shall call this pro-224

cedure mFGNS, which is illustrated in Figure 2.225

2.3.2 Reverting the order: temporal correlation integration into spatially226

correlated data227

The mFGNS procedure proposed in Section 2.3.1 makes clear that spatial corre-

lation is incorporated into the simulated data after accounting for temporal correlation.

One could, however, invert the order in which we apply the correlations. That is, start-

ing with the full normalized data matrix Y constructed in (9), we can first construct ma-

trices U1, . . . ,UJ as in (10) and their respective Cholesky decomposition matrices Rj

as in (11). The next step is to generate a new matrix X̃ of size Ns×K with indepen-

dent random samples from a Normal(0,1) distribution, where Ns is the one year more

than the number of years to simulate. Now, by using the Cholesky decomposition ma-

trix Rj , the uncorrelated synthetic matrix X̃ can be adjusted to capture the spatial cor-

relation for each month j, i.e. one computes

Ṽj := X̃Rj . (15)

Note that Ṽj (which has dimension Ns×K) contains the spatially correlated simulated

data for month j. We then construct the three-dimensional matrix Ṽ as

Ṽijk := Ṽj
i,k, i = 1, . . . , Ns, j = 1, . . . , J, k = 1, . . . ,K, (16)

and define Z̃1, . . . , Z̃K , each of dimension Ns×J as slices of Ṽ in the dimension of space,

i.e., for each k = 1, . . . ,K we have

Z̃k
ij := Ṽi,j,k, i = 1, . . . , Ns, j = 1, . . . , J. (17)

Then, for each k = 1, . . . ,K, we apply the mFGN procedure of Section 2.2 with Z̃k in

place of X, thereby yielding a matrix W̃k which incorporates temporal correlation into
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Figure 2. Schematics of mFGNS

the (spatially correlated) simulated data for site k. Finally, we construct a three-dimensional

matrix W̃ as

W̃ijk := W̃k
i,j , i = 1, . . . , Ns, j = 1, . . . , J, k = 1, . . . ,K. (18)

The matrix W̃ now contains our simulated data for all sites and all months, which takes228

into account both spatial and temporal correlations, in that order. We shall call this pro-229

cedure SmFGN, which is illustrated in Figure 3.230

–13–



manuscript submitted to Water Resources Research

Historical 
data

Years
1,
2,

N

Historical
Streamflows

…

…

Concatenation

Historical 
data

(𝑈𝑗)

Years
1,
2,

N

𝑁(0,1)
Spatially 

distributed 

( ෨𝑉𝑗) 

Years
1,
2,

𝑁𝑠

Obtain

𝑁(0,1)
Spatially 

distributed 

Concatenation
on the Months
dimension

After applying the 𝑅𝑗

spatial correlation 

…

Years

…

Simulated 
data 𝑁(0,1)

Years
1,
2,

𝑁𝑠

…

For each
site k

Years
1,
2,

M

Months:
Apr, May, …, Mar

SmFGN

Apply

Apply mFGN

Years
1,
2,

𝑁𝑠

…

…

Concatenation
of Sites

Sites:
1, 2, …,K

Sites:
1, 2, …,K

Cholesky descomposition 
spatial correlation matrix 𝑅𝑗

Sites:
1, 2, …,K For Each

Month j

For Each
Month j𝑌1 𝑌2 𝑌3 𝑌𝐾
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2.3.3 Combining the mFGNS and SmFGN approaches231

As discussed earlier, the procedures mFGNS and SmFGN described in the previ-232

ous sections both aim at the same goal, which is to incorporate spatial correlation into233

the mFGN approach. The two procedures, however, lead to different simulated results,234

as the order in which the spatial and temporal correlations are considered does indeed235

matter. As we shall see in Section 4, the dimension that is considered first (spatial or236

temporal) is worse represented in the simulated data than the dimension that comes sec-237

ond.238

It is natural then to consider a weighted average of the simulated data generated

by the two procedures, a procedure we shall call Weighted mFGN (WmFGN for short).

Note that for the WmFGN procedure to work, the random numbers X used in the mFGNS

and SmFGN procedures must be the same. More specifically, we consider the three-dimensional

matrices W and W̃ defined respectively in (14) and (18), and define, for α ∈ [0, 1],

Ŵ(α) := (1− α)W + αW̃. (19)

Our goal is to find the value of α such that the spatial and temporal correlations

induced by Ŵ(α) are closest to the corresponding correlations of the historical data. With

that in mind, we define the following error metrics:

∆s
avg(α):=mean spatial error =

1

J

J∑
j=1

1

K2

K∑
ℓ,k=1

∣∣∣Corr(Yj)ℓk − Corr(Ŵj(α))ℓk

∣∣∣ , (20)

∆t
avg(α):=mean temporal error =

1

K

K∑
k=1

1

J2

J∑
j,ℓ=1

∣∣∣Corr(Yk)jℓ − Corr(Ŵk(α))jℓ

∣∣∣ , (21)

∆s
max(α):=max. spatial error = max

j=1,...,J
max

ℓ,k=1,...,K

∣∣∣Corr(Yj)ℓk − Corr(Ŵj(α))ℓk

∣∣∣ , (22)

∆t
max(α):=max. temporal error max

k=1,...,K
max

j,ℓ=1,...,J

∣∣∣Corr(Yk)jℓ − Corr(Ŵk(α))jℓ

∣∣∣ . (23)

In the above equations, Yj denotes a slice of Y across the month j, Yk denotes a slice239

of Y across the site k, and similarly for Ŵj(α) and Ŵk(α).240

The metrics defined in (20)-(23) measure the correlation error in four different ways—

spatial or temporal error, mean or maximum error. Suppose the decision maker is in-

terested in minimizing both the spatial and temporal errors, but one of the dimensions

is more important than the other. Such preference can be represented by a (user-defined)

parameter λ ∈ [0, 1] such that the temporal error has weight λ whereas the spatial er-

ror has weight 1 − λ. We can then define two optimization problems to find the opti-
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mal α:

Objective 1: min
α∈[0,1]

λ∆t
avg(α) + (1− λ)∆s

avg(α) (24)

Objective 2: min
α∈[0,1]

λ∆t
max(α) + (1− λ)∆s

max(α). (25)

Note that, in either case, the optimal α∗ is a function of the user-defined parameter λ.241

Once α∗ is found, by using (19) the simulated data is then defined as Ŵ(α∗).242

Remark: The metrics defined in (20)-(23) can be interpreted in terms of vector norms

on matrices (see, e.g., Horn and Johnson (2012)). To see that, given a square matrix AM×M ,

for p ≥ 1 define the ℓp-norm

∥A∥p :=

 M∑
i=1

M∑
j=1

|Aij |p
1/p

.

As customary, the above definition can be extended to p = ∞ as follows:

∥A∥∞ := max
i=1,...,M

max
j=1,...,M

|Aij |.

Define now the following error metrics:

∆s
p(α):=spatial error =

∥∥∥∥∥
[
vj : vj =

∥∥∥Corr(Yj)− Corr(Ŵj(α))
∥∥∥
p

] ∥∥∥∥∥
p

, (26)

∆t
p(α):=temporal error =

∥∥∥∥∥
[
uk : uk =

∥∥∥Corr(Yk)− Corr(Ŵk(α))
∥∥∥
p

] ∥∥∥∥∥
p

, (27)

In the above equations, Yj denotes a slice of Y across the month j, Yk denotes a slice243

of Y across the site k, and similarly for Ŵj(α) and Ŵk(α). We see that (26)-(27) co-244

incides with (22)-(23) when p = ∞. Moreover, when p = 1, (20) is equivalent to (26)245

divided by JK2, whereas (21) is equivalent to (27) divided by KJ2. We use (20)-(23)246

as they are more intuitive to formulate, but the interpretation as vector norms on ma-247

trices opens the possibility to measure the error with different values of p—for instance,248

p = 2 which corresponds to the well-known Frobenius norm.249

In the next sections we present a case study to illustrate the application of the WmFGN250

procedure described above, and compare the results with those obtained by using the251

approach of (Kirsch et al., 2013).252
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3 Case study253

To test the WmFGN methodology, we simulate streamflows from the Bio-bio river254

basin depicted in Figure 4. The Bio-bio river basin, located in Southern Chile, presents255

an average annual precipitation of 1,330 mm, which leads to mean daily discharges of256

960 m3/s (Grantham et al., 2013). The basin has a significant urban area, which in-257

cludes the city of Concepción, a large percentage of forest plantations (∼20% of the land258

cover), and has been historically important for the country due to its hydroelectric pro-259

duction (Grantham et al., 2013). The Bio-bio river basin represents almost 40% of the260

hydroelectric potential of Chile, a country that is historically known for the importance261

of its hydroelectric sector (CNE, 2023). In addition, the Biobio region (i.e., formed by262

the Biobio basin, small coastal basins near Biobio and also used to include the north-263

ern Ñuble region, see Figure 4) supplies about 10% of Chile’s urban drinking water con-264

sumption (Molinos-Senante & Donoso, 2021).265

Given the importance of hydroelectricity for Chile and the Bio-bio river basin, we266

decided to perform our numerical analysis on the streamflows of that basin used by the267

National Electric Coordinator (NEC) (CEN, 2021). The data includes weekly stream-268

flows (i.e., considering four weeks per month) between the hydrological years 1960/61269

and 2018/19, note that hydrological years start in April in this region, of the rivers of270

interest for the NEC (e.g. inflows of hydro-power plants). After filtering the NEC stream-271

flow database by location, the weekly flows were aggregated into monthly time series.272

Then, the flows were filtered to identify those for which most of their months (i.e., at least273

9 out of 12) had a log-normal distribution. Finally, nine sites remained for the Bio-bio274

river basin, which are those presented in Figure 4. Statistics for these rivers are presented275

in Table 1, which include location, annual streamflow mean and standard deviation.276

The seasonal variation of the monthly mean and standard deviation of the stream-277

flows, for the period 1960/61-2018/19, are presented in Figures 5 for three representa-278

tive rivers (Abanico, El Toro and Ralco). Seasonal variations for the remaining six rivers279

are given in the Supplementary material (Figures S1 and S2). As can be seen in these280

figures, most locations, regardless of the streamflows magnitudes, present a double peak281

in the Winter months (Jun-July) and in Spring (October to December). The first one282

is related to a pluvial peak, given that most of the precipitation falls during Winter, while283
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the second peak is related to snow-melt. Hence, the Bio-bio river basins has a mixed nivo-284

pluvial flow.285

Some recent challenges of the Bio-bio river basin have been related to both floods286

and droughts. Hence, developing proper hydrological modeling is of importance for the287

basin. The Bio-bio river basin suffered a 100-year flood during Winter of 2006 (Gironás288

et al., 2021). On the other hand Bio-bio is undergoing a “megadrought”, which corre-289

sponds to an uninterrupted event of below-average precipitation years since 2010 (Boisier290

et al., 2016). The megadrought is a phenomenon that has affected other basins as well291

(Barŕıa et al., 2021), having an impact for more than a decade over Central-Southern292

Chile (Garreaud et al., 2020, 2021). Also, climate change projections over Central-Southern293

Chile indicate that precipitations should decrease in the future (Chadwick et al., 2018;294

Araya-Osses et al., 2020; Chadwick et al., 2023).295
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Figure 4. Bio-bio river basin overview.
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Table 1. Locations of the streamflows with their annual mean, and standard deviation

Site River Lat. Lon. Mean Std. Dev.

Number (m3/s) (m3/s)

1 Laja I -37.24 -72.53 15.09 6.96

2 Angostura -37.71 -71.81 131.49 39.46

3 Antuco -37.31 -71.63 49.05 15.07

4 Abanico -37.36 -71.50 4.46 1.46

5 El Toro -37.29 -71.50 61.67 16.61

6 Ralco -38.04 -71.48 249.45 68.92

7 Pangue -37.91 -71.61 28.17 11.49

8 Mampil -37.53 -71.70 21.75 5.31

9 Peuchen -37.54 -71.59 35.50 9.17
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Figure 5. Monthly mean (a, c, and e) and standard deviation (b, d, and f) of the streamflows

of Abanico (a, and b), El Toro (c, and d), and Ralco (e, and f) rivers.

4 Numerical results296

4.1 Optimal parameters from WmFGN297

The performance of the proposed WmFGN is measured in term of its capability298

of preserving the original temporal and spatial correlations in the observed data. The299

measurements of correlation errors of the simulated data are computed in Eqs. (20) to300

(23) for different values of α and plotted in Figures 6a and 6b. The performance is also301

compared against that of the mFGN, which is not dependent on α and presents difficul-302

ties with replicating the spatial correlation of the observed data. The temporal and spa-303

tial correlation errors for the mean and maximum error metrics for mFGN are computed304

using similar expressions as in (20)-(23), but with the matrix Ŵ(α) replaced with the305

matrix corresponding to the mFGN method with spatial correlation added via re-sampling,306

–21–



manuscript submitted to Water Resources Research

as discussed in Section 2.3.1. We shall denote the resulting correlation errors for mFGN307

by δsavg, δ
t
avg, δ

s
max and δtmax, using a notation analogous to that in (20)-(23).308

Figures 6c and 6d depict the Pareto frontier of spatial and temporal correlation er-309

rors. As expected, there is a trade-off between obtaining good performance in the spa-310

tial correlation and good performance in the temporal correlation, both in terms of the311

mean error (Figures 6a and 6c) and the maximum error (Figures 6b and 6d).312

For this specific problem, we see in Figures 6b and 6d that the WmFGN, with a313

value of α around 0.5, shows considerable reduction of the maximum error in the spa-314

tial correlation compared to mFGN (which coincides with the spatial error of WmFGN315

with α = 1), with almost no increase in the temporal correlation error. On the other316

hand, we observe in Figures 6a and 6c that there is a range of values of α (between around317

0.75 and 0.98) for which both spatial and temporal mean errors for WmFGN are smaller318

than the mFGN errors, that is, for that metric WmGFN is superior to mFGN in both319

spatial and temporal dimensions.320

Although the results are specific for the Bio-bio basin, they represent a clear illus-321

tration of how the WmFGN presents an improvement over mFGN in terms of preserv-322

ing both spatial and temporal correlations, in addition to allowing for more flexibility.323
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Figure 6. Mean (a) and maximum (b) spatial and temporal correlation errors as a function

of α; (c) and (d) depict spatial vs. temporal error for the mean and maximum error metrics,

respectively.

When finding the optimal weight α balancing mFGNS and SmFGN in (19) that324

minimizes the weighted sum of spatial and temporal mean (resp. maximum) correlation325

errors with model (24) (resp. (25)) under different user-defined parameters λ, we obtain326

a curve as displayed in Figure 7a (resp. Figure 7b). As discussed earlier, the value of λ327

allows the user of WmFGN to prioritize between the spatial (i.e., λ=0) or temporal (i.e.,328

λ=1) correlation. Not surprisingly, the optimal value of α coincides with λ at the extreme329

cases–––after all, if the user is only concerned with spatial correlation (i.e., chooses λ =330

0) then the best combination between mFGNS and SmFGN is really just using mFGNS331

which gives the highest priority to spatial correlation, and that corresponds to taking332

α = 0 in (19). An analogous argument holds for the case where temporal correlation333

is preferred.334

The optimal values of the objective functions 1 (Eq. (24)) and 2 (Eq. (25)) are pre-

sented in Figures 7c and 7d, respectively, for different values of the user-defined param-

eter λ. For comparison, we also compute the values of Objectives 1 and 2 for the mFGN.
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This amounts to calculating

Objective 1: λδtavg + (1− λ)δsavg (28)

Objective 2: λδtmax + (1− λ)δsmax, (29)

where δtavg, δ
s
avg, δ

t
max and δsmax are the correlation errors for mFGN, as defined earlier.335

Note that for objective function 1, WmFGN always yields lower values than mFGN (Fig-336

ure 7c), whereas for objective function 2, WmFGN yields lower values than mFGN for337

most values of λ, except when λ is close to 1 in which case both WmFGN and mFGN338

coincide (Figure 7d). The advantage of using WmFGN over mFGN increases as the user339

gives higher importance of spatial correlation over temporal one, which is visually rep-340

resented as the increasing gap between the objective functions in Figures 7c and 7d, as341

λ approaches zero.342

Deciding on an appropriate value for λ will depend on the user’s priority for cor-343

rectly simulating spatial or temporal correlation, which will eventually define the asso-344

ciated value for α. Nevertheless, if the user has similar priorities for both correlations,345

and wants to decide which λ to use, an option could be simply using λ=0.5. Interest-346

ingly, as seen in Figure 7a, such a value corresponds to taking α = 0.33, that is, giv-347

ing twice the weight to mFGNS relatively to SmFGN. Another option could be equat-348

ing the temporal and spatial errors, which for the mean error criterion yields a value of349

α of 0.562 (Figure 6a), whereas for the maximum error criterion it yields a value of α =350

0.578 (Figure 6b). These values of α correspond to taking λ = 0.574 and λ = 0.842351

for the mean and maximum error criteria, respectively (Figure 7a and 7b). Note also that352

these values of λ are the maximizers of the WmFGN objective functions in Figures 7c353

and 7d, and represent a change in the concavity of the α-curves (Figures 7a and 7b).354
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Figure 7. Optimal values of α as a function of λ for the mean error (a) and maximum error

(b) criteria; (c) and (d) depict the optimal objective function values in (24) and (25), respec-

tively, as a function of λ.

4.2 Illustration of the behaviour of the correlations355

One advantage of the WmFGN approach, compared to other methods proposed356

in the literature (including mFGN) is that it tailors the procedure according to the im-357

portance of temporal vs spatial correlation specified by the user, which in this case is ac-358

complished by means of the parameter λ in (24) and (25). Figures 8d-8h and 9d-9h il-359

lustrate that flexibility, displaying the correlations calculated from the simulated data360

generated by WmFGN using the mean error metric (Objective 1). The figures depict the361

temporal correlation of among months for a representative river (Ralco), and the spa-362

tial correlation among locations for a representative month (November), respectively, for363

different values of the parameter λ. In addition to the actual correlations, Figures 8i-364

8m and 9i-9m show the correlation errors with respect to observed data. For the sake365

of comparison, Figures 8a-8c and 9a-9c show the correlations of observed data, the cor-366
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relations calculated from data simulated for mFGN, and the associated correlation er-367

rors.368

The figures demonstrate that WmFGN accomplishes what it proposes to do. For369

values of λ ≥ 0.75 (priority to temporal correlation), we see in Figure 8 that the tem-370

poral correlation errors are indeed small. These errors increase as λ decreases. In Fig-371

ure 9 we see the opposite effect—the spatial errors are small for λ ≤ 0.25 (priority to372

spatial correlation), and increase as λ increases.373

The figures also corroborate the previous conclusions about the benefit of the Wm-374

FGN approach over mFGN for preserving both spatial and temporal correlations. The375

mFGN procedure—which by construction prioritizes temporal correlation— presents very376

low temporal correlation errors as shown in Figure 8c, at the expense of high spatial cor-377

relation errors (see Figure 9c). This is in line with the results of previous studies (Herman378

et al., 2016). However, a comparison between the correlation errors for mFGN and for379

WmFGN with λ = 1 in Figures 8m and 9m (which is the comparable case where full380

priority is given to temporal correlation) shows that the temporal correlation errors for381

WmFGN are in fact smaller than those for mFGN, and the spatial correlation errors are382

similar. Moreover, by introducing flexibility via the λ parameter, the WmFGN approach383

allows the user to “sacrifice” some of the precision in the temporal correlation in order384

to increase the precision in the spatial correlation—a flexibility that is not present in mFGN.385

The above discussion is based on the results corresponding to Objective 1 (mean386

error criterion). Similar conclusions can be obtained by examining Figures 10 and 11,387

which display the results corresponding to Objective 2 (maximum error criterion). Note388

also that the results discussed above for the chosen representative river and month ap-389

ply similarly to the other rivers and months considered in this paper as shown in Fig-390

ures S3 to S40 in the Supplementary Material.391

Although the choice of error metric to be used (mean or maximum error, correspond-392

ing to Objective 1 and 2, respectively) is problem-specific and depends on the priorities393

of the user, there are some general recommendations. For example, when comparing the394

WmFGN temporal correlation errors in Figures 8i-8m and 10i-10m, we see that the lat-395

ter are more sensitive to changes in the user-defined parameter λ—indeed, the errors are396

similar up to λ = 0.75, and then they change considerably for λ = 1. The correlation397

errors in Figure 8 change more smoothly and hence are not so sensitive to small changes398
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in λ. Such behavior is also illustrated in Figures 7a and 7b, where we see a smoother curve399

for the case of the mean error metric. These properties, if desired, would favor the use400

of the mean error metric over the maximum one.401

 

Figure 8. Pairwise temporal correlations of the 12 months of the year (i.e., the first month

of the hydrological year is April), for the Ralco river, for different time series: a) observed, b)

mFGN, c) absolute difference between observed and mFGN, d-h) WmFGN with different λ val-

ues, subjected to objective function 1, and i-m) absolute difference between the observed and

WmFGN with different λ values.

5 Conclusions402

Hydrology has used for several years the synthetic simulation of hydroclimatic vari-403

ables in different problems. Several reasons make it attractive to extrapolate historical404

records, or to have the capability of analyzing the behaviour of infrastructure under con-405

ditions different from the historical ones. When evaluating the design of new water in-406

frastructure such as reservoirs or water facilities, stochastic methods have been used. These407

tools have also shown to be useful in the evaluation of the operation of current infras-408

tructure. In addition, due to challenges as climate variability and change, it does not suf-409

fice to evaluate new and existing infrastructure under historical conditions. For this rea-410

son, the synthetic simulation of streamflows that are not only consistent with historic411
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Figure 9. Pairwise spatial correlations of the nine river sites (i.e., the sites use the numbering

from Table 1), for the month of November, for different time series: a) observed, b) mFGN, c)

absolute difference between observed and mFGN, d-h) WmFGN with different λ values, sub-

jected to objective function 1, and i-m) absolute difference between the observed and WmFGN

with different λ values.

statistical properties, but also adjustable to future conditions is necessary. The stochas-412

tic models of the family of Fractional Gaussian Noise (FGN) have great potential for this.413

The FGN approaches have shown to be capable of capturing long term memory414

in time series. Unfortunately, the original FGN procedure is not able to simulate infi-415

nite time series; that changed when the Modified FGN (mFGN) method was developed.416

The mFGN procedure is capable of simulating infinite time series that recreate the sea-417

sonal or periodic correlation structure, overcoming the major limitation of FGN. Also,418

mFGN has shown to replicate the temporal correlations of the data. However, mFGN419

is not well suited to represent the spatial correlation structure required to simulate sev-420

eral streamflows at the same time.421

In this paper we have proposed a new method, called Weighted mFGN (WmFGN),422

that addresses both temporal and spatial correlations simultaneously. Our numerical ex-423

periments for a basin in Chile demonstrate that the WmFGN procedure represents a sig-424

nificant improvement in preserving the spatial correlation, when compared against mFGN.425

Moreover, since there is a trade-off in terms of representing the spatial and temporal cor-426
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Figure 10. Pairwise temporal correlations of the twelve months of the year (i.e., the first

month of the hydrological year is April), for the Ralco river, for different time series: a) observed,

b) mFGN, c) absolute difference between observed and mFGN, d-h) WmFGN with different λ

values, subjected to objective function 2, and i-m) absolute difference between the observed and

WmFGN with different λ values.

relations, the method allows the user to specify the importance of one type of correla-427

tion over the other, and tailors the method for that choice by optimizing over some in-428

ternal parameters. To the best of our knowledge, no other method in the literature ad-429

dresses this trade-off in a systematic way.430

Regardless of the trade-off, in our experiments the WmFGN procedure outperforms431

mFGN, even when temporal correlation is prioritized. Moreover, the higher the prior-432

ity of the spatial correlation specified by the user, the higher the benefit of using Wm-433

FGN over mFGN.434

As discussed earlier, the proposed approach requires the user to specify the impor-435

tance of temporal correlation over the spatial one, by means of a parameter λ such that436

the weight of temporal correlation is λ whereas the weight of spatial correlation is 1−437

λ. In the absence of a preference, the user can give equal weights to both correlations438

(i.e., choose λ = 0.5). Note however that such a choice does not imply that the errors439

in both correlations (with regards to observed data) are the same; thus, another possi-440

–29–



manuscript submitted to Water Resources Research

 

Figure 11. Pairwise spatial correlations of the nine river sites (i.e., the sites use the number-

ing from Table 1), for the month of November, for different time series: a) observed, b) mFGN,

c) absolute difference between observed and mFGN, d-h) WmFGN with different λ values, sub-

jected to objective function 2, and i-m) absolute difference between the observed and WmFGN

with different λ values.

ble choice for the user is to impose that the errors in both correlations be equal, and let441

the method compute the corresponding value of λ automatically.442

Finally, it is important to remember that our conclusions about the performance443

of WmFGN are based on the numerical experiments we have conducted. Future stud-444

ies should further test the WmFGN in other basins, and also with different climates. More-445

over, different error metrics can be tested; for instance, the remark in Section 2.3 sug-446

gests that other vector norms on matrices (or, more generally, other matrix norms) can447

be used.448
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